连通无向图有最小生成树,边权从小到大排序,每次尝试加入权最小的边,如果不成圈,就把这边加进去,所有边扫一遍就求出了最小生成树。

判断连通分支用Union-Set(并查集),就是把连通的点看成一个集合,只关心哪些点在一个集合里,而不关心相互的连接方式。x父节点用fa【x】保存;如果x没有父节点,fa【x】 = x。查找一条长链的时候每次用递归把链上的点的父节点全设置成根节点,方便下次查找。思路看上去挺简单的,然而程序调试了好久。开始把边按无向图那样正反各存一次,其实是没必要的,反正每条边考察一次;剩下的就是细节问题,码力不足到处出错。测试了一组数据:

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int maxm = ;
struct Edge
{
int u, v, w;
Edge(){}
Edge(int u, int v, int w):u(u), v(v), w(w){}
}E[maxm];//只存边就好啦,不用把从一个点出发的边穿起来
int n, m;
int r[maxm], fa[maxm];
int cmp(int x, int y)
{
return E[x].w < E[y].w;
}
int findbaba(int x)
{
return fa[x] == x? x : fa[x] = findbaba(fa[x]);//找父节点
}
int kruskal()
{
int ans = ;
vector<int> path;//存路径
for(int i = ; i <= n; i++)
fa[i] = i;//每个人的爸爸都是自己(误)
for(int i = ; i < m; i++)
r[i] = i;//把边的序号放一个数组里
sort(r, r+m, cmp);//移动序号比移动struct容易吧
for(int i = ; i < m; i++)
{
int e = r[i];
int x = findbaba(E[e].u);
int y = findbaba(E[e].v);
if(x != y)//加入边e后不成圈
{
ans += E[e].w;
fa[x] = y;
path.push_back(e);
}
}
for(int i = ; i < path.size(); i++)
{
int e = path[i];
printf("%d<->%d :%d ", E[e].u, E[e].v, E[e].w);
}//打印路径
return ans;//最小权和
} int main()
{
//freopen("in.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
for(int i = ; i < m; i++)
{
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
}
printf("\n%d\n", kruskal());
}
return ;
}

求最小生成树的kruskal算法的更多相关文章

  1. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  2. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  3. HDU1875——畅通工程再续(最小生成树:Kruskal算法)

    畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...

  4. 【最小生成树之Kruskal算法】

    看完之后推荐再看一看[最小生成树之Prim算法]-C++ 定义:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kr ...

  5. [总结]最小生成树之Kruskal算法

    目录 一.最小生成树的相关知识 1. 树的性质 2. 生成树 3. 最小生成树 4. 最小生成树的性质 二.Kruskal算法求最小生成树 1. 核心思想 2. 具体流程 3. 图示 4. 代码实施 ...

  6. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  7. 23最小生成树之Kruskal算法

    图的最优化问题:最小生成树.最短路径 典型的图应用问题 无向连通加权图的最小生成树 有向/无向加权图的最短路径 四个经典算法 Kruskal算法.Prim算法---------------最小生成树 ...

  8. 最小生成树的Kruskal算法

        库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法.Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的 ...

  9. 算法学习记录-图——最小生成树之Kruskal算法

    之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集 ...

随机推荐

  1. $gopath not set的解决办法

    执行安装 sudo go get github.com/nsf/gocode 提示: cannot download, $GOPATH not set. For more details see: g ...

  2. js实现sleep

    1.这种不是匀速, 写到for循环中出现1,2,3.......456....的情况 function sleep(milliseconds) { var start = new Date().get ...

  3. Java 连接MongoDB集群的几种方式

    先决条件 先运行mongodb肯定是必须的,然后导入以下包: import com.mongodb.MongoClient; import com.mongodb.MongoClientURI; im ...

  4. Huginn及环境搭建

    博客搬迁至https://blog.wangjiegulu.com RSS订阅:https://blog.wangjiegulu.com/feed.xml Huginn 及环境搭建 什么是 Hugin ...

  5. CentOS 安装 Redis 5

    https://redis.io/download下载最新stable版,当前最新版为redis-5.0.3.tar.gz cd /usr/local/src && wget http ...

  6. k8s yaml说明

    k8s yaml # yaml格式的pod定义文件完整内容: apiVersion: v1       #必选,版本号,例如v1 kind: Pod       #必选,Pod metadata:   ...

  7. 程序猿必备的10款web前端动画插件一

    1.动画SVG框架幻灯片 在幻灯片之间切换时显示动画SVG帧的实验性幻灯片.不同的形状可以用来创建各种风格. 我们想和大家分享一个实验幻灯片.我们的想法是在从一个幻灯片转换到另一张幻灯片时,使SVG帧 ...

  8. 使用DNSPod解析Freenom域名

    注册Freenom域名 Freenom官网:http://www.freenom.com Freenom提供的顶级域名包括:tk,ml,ga,cf,gq 申请流程: 注册用户后登陆,然后查询并选择一个 ...

  9. 搭建hbase1.2.5完全分布式集群

    简介 有一段时间,没写博客了,因为公司开发分布式调用链追踪系统,用到hbase,在这里记录一下搭建过程 1.集群如下: ip 主机名 角色 192.168.6.130 node1.jacky.com ...

  10. #pragma multi_compile_fwdbase会增加很多个shader variants

    #pragma multi_compile_fwdbase是unity内置的用于前向渲染的关键字快捷方式,它包含了前向渲染光照计算需要的大多数关键字,因此会被shader带来很多的变体. 下面这个简单 ...