求最小生成树的kruskal算法
连通无向图有最小生成树,边权从小到大排序,每次尝试加入权最小的边,如果不成圈,就把这边加进去,所有边扫一遍就求出了最小生成树。
判断连通分支用Union-Set(并查集),就是把连通的点看成一个集合,只关心哪些点在一个集合里,而不关心相互的连接方式。x父节点用fa【x】保存;如果x没有父节点,fa【x】 = x。查找一条长链的时候每次用递归把链上的点的父节点全设置成根节点,方便下次查找。思路看上去挺简单的,然而程序调试了好久。开始把边按无向图那样正反各存一次,其实是没必要的,反正每条边考察一次;剩下的就是细节问题,码力不足到处出错。测试了一组数据:


代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxm = ;
struct Edge
{
int u, v, w;
Edge(){}
Edge(int u, int v, int w):u(u), v(v), w(w){}
}E[maxm];//只存边就好啦,不用把从一个点出发的边穿起来
int n, m;
int r[maxm], fa[maxm];
int cmp(int x, int y)
{
return E[x].w < E[y].w;
}
int findbaba(int x)
{
return fa[x] == x? x : fa[x] = findbaba(fa[x]);//找父节点
}
int kruskal()
{
int ans = ;
vector<int> path;//存路径
for(int i = ; i <= n; i++)
fa[i] = i;//每个人的爸爸都是自己(误)
for(int i = ; i < m; i++)
r[i] = i;//把边的序号放一个数组里
sort(r, r+m, cmp);//移动序号比移动struct容易吧
for(int i = ; i < m; i++)
{
int e = r[i];
int x = findbaba(E[e].u);
int y = findbaba(E[e].v);
if(x != y)//加入边e后不成圈
{
ans += E[e].w;
fa[x] = y;
path.push_back(e);
}
}
for(int i = ; i < path.size(); i++)
{
int e = path[i];
printf("%d<->%d :%d ", E[e].u, E[e].v, E[e].w);
}//打印路径
return ans;//最小权和
} int main()
{
//freopen("in.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
for(int i = ; i < m; i++)
{
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
}
printf("\n%d\n", kruskal());
}
return ;
}
求最小生成树的kruskal算法的更多相关文章
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 数据结构与算法--最小生成树之Kruskal算法
数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...
- HDU1875——畅通工程再续(最小生成树:Kruskal算法)
畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...
- 【最小生成树之Kruskal算法】
看完之后推荐再看一看[最小生成树之Prim算法]-C++ 定义:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kr ...
- [总结]最小生成树之Kruskal算法
目录 一.最小生成树的相关知识 1. 树的性质 2. 生成树 3. 最小生成树 4. 最小生成树的性质 二.Kruskal算法求最小生成树 1. 核心思想 2. 具体流程 3. 图示 4. 代码实施 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 23最小生成树之Kruskal算法
图的最优化问题:最小生成树.最短路径 典型的图应用问题 无向连通加权图的最小生成树 有向/无向加权图的最短路径 四个经典算法 Kruskal算法.Prim算法---------------最小生成树 ...
- 最小生成树的Kruskal算法
库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法.Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的 ...
- 算法学习记录-图——最小生成树之Kruskal算法
之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集 ...
随机推荐
- jQuery数据转换与提交
json2.js序列化,即JSON对象转换成String字符串: JSON.stringify({ id: 1, name: 'jsons' }); 反序列化,即String转JSON对象: JSON ...
- 百度富文本编辑器整合fastdfs文件服务器上传
技术:springboot+maven+ueditor 概述 百度富文本整合fastdfs文件服务器上传 详细 代码下载:http://www.demodashi.com/demo/15008.h ...
- 单片机成长之路(51基础篇) - 013 MCS-51单片机控制详解–T2MOD
T2CON:定时器控制寄存器 寄存器地址0C8H,位寻址0C8H-0CFH. 位地址 CF CE CD CC CB CA C9 C8 位符号 TF2 EXF2 RCLK TCLK EXEN2 TR2 ...
- 单片机成长之路(avr基础篇)- 001 ISP与IAP的区别
ISP(In-System Programming)在系统可编程,指电路板上的空白器件可以编程写入最终用户代码, 而不需要从电路板上取下器件,已经编程的器件也可以用ISP方式擦除或再编程.IAP(In ...
- Effective Java 第三版——68. 遵守普遍接受的命名约定
Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...
- Atitit 最近资料文章列表r9 r8 月份 attilax总结
Atitit 最近资料文章列表r9 r8 月份 attilax总结 atitit tag标签标示规范 attilax总结 v2 r922.docx 2017-09-28 02:04 阅读(27) ...
- Thymeleaf模版--子页面单独引入CSS、JS文件
https://blog.csdn.net/u010392801/article/details/80465800 ****************************************** ...
- mysql知识汇总
一.数据类型介绍 数据类型 字节长度 范围或用法 bigint 8 无符号[0,2^64-1],有符号[-2^63 ,2^63 -1] binary(M) M 类似Char的二进制存储,只包含byte ...
- 【Unity】项目工程源码
Unity开发者俱乐部 http://blog.csdn.net/dingxiaowei2013/article/details/50605208 游戏蛮牛 9秒社团 6m5m raywenderli ...
- 图解JAVA参数传递
今天做项目,发现了一个问题,当String作为参数传递的时候,在函数内部改变值对外部的变量值无影响,如下代码: public static void main(String[] args) { Str ...