题目链接

感觉这样的题真的称得上是鬼斧神工啊,\(\text{OI}\)中能多一些这样的题目就太好了。

题意:

有一个二维的三角坐标系,大概如图所示(图是从atcoder里偷下来的):

坐标系上的每个整点处都有一盏灯,初始时只有一盏灯亮着。每次可以选择三个整点\((x,y)\),\((x,y+1)\),\((x+1,y)\)(即一个底边向下的正三角形),将这三盏灯的开关状态反转。现在给出若干次反转操作后所有亮着的\(n\)盏灯的坐标,求最初亮着的是哪一盏灯。\(n\leq 10^4\),\(-10^{17}\leq 坐标\leq 10^{17}\)。

题解:

我们考虑将从某一盏灯开始,不断通过向下反转将在\(y=c\)上的灯转移到\(y=c-1\)上。可以发现如果我们从\((0,0)\)开始向下转移\(c\)次,每一行的亮灯状态就是帕斯卡三角在模\(2\)意义下的结果,结合卢卡斯定理,可以发现\(y=-c\)上只有满足\(0\leq x\leq c\)且\(x\subseteq c\)的\((x,-c)\)是亮的。那么不难发现此时\((0,-c)\)和\((c,-c)\)一定是亮的,于是我们只要将所有亮着的灯向下转移到同一条足够低的直线上,再计算出这条直线上亮着的灯中最左端和最右端的点,就可以知道原来的点是什么。

说的好听,怎么计算左右端点呢?

我们先来研究一下帕斯卡三角在模\(2\)意义下有什么性质。如果我们将模\(2\)余\(1\)的点看作黑点,否则看作白点,那么帕斯卡三角是长这样的(偷自维基百科):

可以发现这是一个类似分形的结构,同时每一个三角形的边长都是\(2^k\)。那么考虑从这一行的任意一个亮着的\((x,y)\)开始向右移动,对于\(k=60,59,\dots,0\),如果\((x,y+2^k)\)是亮着的,那么移动到\((x,y+2^k)\),这相当于移动至右边的一个同构三角形的等价位置上。可以证明这一定可以移动到右端点。左端点也是类似的。判断一个点是否是亮着的也很简单,只需要\(O(n)\)扫描每个点即可。

于是我们得到了一个优秀的\(O(n\log MAX)\)的做法,其中\(MAX\)表示坐标范围。假的。

上面这个做法的问题在于我们无法快速找到一行中的一个会亮着的点!那么怎么高效的找到一个呢?

再考虑帕斯卡三角形的一个性质:对于第\(n\)行,对于\(k=0,1,2\),至少存在一个\(k\)使得\(\sum_{x\equiv k(\bmod\ 3)}{n\choose x}\equiv 1(\bmod \ 2)\),由归纳法保留上一行模\(3\)的和数组向下转移即可证明。假设我们可以在很快的时间里计算对于\(l\leq x\leq r\)且\(x\equiv k(\bmod\ 3)\)的\(x\),\((x,-c)\)是亮着的点数是奇数还是偶数,那么就可以通过二分的方法,每次选择点数是奇数的那一半继续做即可。由于左右两边的总点数是奇数因此这一半是一定存在的。

考虑怎么解决这个问题,显然在模\(2\)下每个点可以分开计算。那么对每个点考虑数位\(dp\),状态只需要记已经确定了几位,是否受数位的限制以及当前数在模\(3\)意义下余多少即可,结合卢卡斯定理可以设计转移。这么做复杂度是\(O(n\log MAX)\)的,结合二分,我们可以在\(O(n\log^2 MAX)\)的时间内找到一个亮着的点。于是我们就在\(O(n\log^2 MAX)\)的时间内解决了问题。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
using std::max;
using std::min;
using std::pair;
using std::make_pair;
typedef long long ll;
const int N=1e4+5;
int n;
ll x[N],y[N];
int res[3];
int dp[64][2][3];
inline void calc(ll c,ll x,ll y,ll r)
{
ll n=x-c;
register int i,j,k;
r-=y;
if(r<0)
return res[0]=res[1]=res[2]=0,void();
memset(dp,0,sizeof(dp));
dp[63][1][0]=1;
for(i=63;i>0;i--)
if(!(n>>(i-1)&1))
{
for(j=0;j<3;j++)
{
if(dp[i][0][j])
dp[i-1][0][(j*2)%3]^=1;
if(dp[i][1][j])
{
if(r>>(i-1)&1)
dp[i-1][0][(j*2)%3]^=1;
else
dp[i-1][1][(j*2)%3]^=1;
}
}
}
else
{
for(j=0;j<3;j++)
{
if(dp[i][0][j])
{
dp[i-1][0][(j*2)%3]^=1;
dp[i-1][0][(j*2+1)%3]^=1;
}
if(dp[i][1][j])
{
if(r>>(i-1)&1)
dp[i-1][0][(j*2)%3]^=1,dp[i-1][1][(j*2+1)%3]^=1;
else
dp[i-1][1][(j*2)%3]^=1;
}
}
}
y=(y%3+3)%3;
res[y]=dp[0][0][0]^dp[0][1][0];
res[(y+1)%3]=dp[0][0][1]^dp[0][1][1];
res[(y+2)%3]=dp[0][0][2]^dp[0][1][2];
return;
}
int lres[3],rres[3],mres[3];
inline ll epc(ll c)
{
int k;
ll l=-1000000000000000000ll,r=1000000000000000000ll,mid;
register int i;
rres[0]=rres[1]=rres[2]=0;
for(i=1;i<=n;i++)
{
calc(c,x[i],y[i],r);
rres[0]^=res[0];rres[1]^=res[1];rres[2]^=res[2];
}
lres[0]=lres[1]=lres[2]=0;
for(i=0;i<3;i++)
if(rres[i])
{
k=i;
break;
}
while(l<r)
{
mid=(l+r)>>1;
mres[0]=mres[1]=mres[2]=0;
for(i=1;i<=n;i++)
{
calc(c,x[i],y[i],mid);
mres[0]^=res[0];mres[1]^=res[1];mres[2]^=res[2];
}
if(mres[k]^lres[k])
r=mid,memcpy(rres,mres,sizeof(int)*3);
else
l=mid+1,memcpy(lres,mres,sizeof(int)*3);
}
return l;
}
inline bool light(ll x,ll y)
{
int res=0;
ll xx,yy,n,m;
register int i;
for(i=1;i<=::n;i++)
{
xx=::x[i];yy=::y[i];
n=xx-x;m=y-yy;
if(m<0||m>n)
continue;
res^=((n|m)==n);
}
return res;
}
inline void solve(ll c,pair<ll,ll> &a)
{
ll k=epc(c),lk=k,rk=k;
// fprintf(stderr,"%lld\n",k);
register ll i;
for(i=1ll<<62;i;i>>=1)
if(light(c,lk-i))
lk-=i;
for(i=1ll<<62;i;i>>=1)
if(light(c,rk+i))
rk+=i;
a.first=c+(rk-lk);a.second=lk;
return;
}
signed main()
{
pair<ll,ll> a;
register int i;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%lld%lld",&x[i],&y[i]);
solve(-100000000000000000,a);
printf("%lld %lld\n",a.first,a.second);
return 0;
}

AtCoder WTF 2019 C2. Triangular Lamps Hard的更多相关文章

  1. AtCoder ExaWizards 2019 简要题解

    AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...

  2. AtCoder diverta 2019 Programming Contest 2

    AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...

  3. AtCoder ExaWizards 2019 D Modulo Operations

    题意 给出一个长度为\(n\)的数列和数字\(X\),对于数列的每一种排列,其权值\(X\)依次对排列中的数取模,求出\(n!\)种情况最后剩下的数的权值和 分析 如果大的数字排在小的数字后面,那么大 ...

  4. AtCoder M-SOLUTIONS 2019 Task E. Product of Arithmetic Progression

    problem link Official editorial: code: int main() { #if defined LOCAL && !defined DUIPAI ifs ...

  5. AtCoder Beginner Contest 133-C - Remainder Minimization 2019

    https://atcoder.jp/contests/abc133/tasks/abc133_c 思路:由于L,R区间太大,所以不能暴力枚举.由于求(i*j)%2019的最小值,那么2019的倍数对 ...

  6. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

  7. [AtCoder] Yahoo Programming Contest 2019

    [AtCoder] Yahoo Programming Contest 2019   很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...

  8. 【AtCoder】Tenka1 Programmer Contest 2019

    Tenka1 Programmer Contest 2019 C - Stones 题面大意:有一个01序列,改变一个位置上的值花费1,问变成没有0在1右边的序列花费最少多少 直接枚举前i个都变成0即 ...

  9. 【AtCoder】ExaWizards 2019

    ExaWizards 2019 C - Snuke the Wizard 发现符文的相对位置不变,直接二分某个位置是否到达最左或最右来计算 #include <bits/stdc++.h> ...

随机推荐

  1. python基础学习第三天

    #变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间#基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中#变量可以指定不同的数据类型,这些变量可以存储整数.小数 ...

  2. 修改windows7本地策略--不能挂载磁盘和复制 -- 黏贴板-驱动器映射

    1.gpedit.msc -- > 计算机配置-- > 管理模板 -- > windows 组件 -- > 远程桌面服务 -- > 远程桌面服务主机 -- > 设备 ...

  3. [03] mapper.xml的基本元素概述

    1.select 我们基于这个持久层接口 GirlDao: public interface GirlDao { List<Girl> findByAge(int age); Girl f ...

  4. 如何学习 Webpack

    webpack-howto Tip: 本文是 webpack-howto 的原文,我觉得这篇文章写得非常好,确实算是目前学习 webpack 入门的必读文章.直接收录之. 本教程的目标 这是一本教你如 ...

  5. Newtonsoft的序列化和反序列化

    class test    {        public string a;       public int b;        public byte[] c;        public In ...

  6. dp方法论——由矩阵相乘问题学习dp解题思路

    前篇戳:dp入门——由分杆问题认识动态规划 导语 刷过一些算法题,就会十分珍惜“方法论”这种东西.Leetcode上只有题目.讨论和答案,没有方法论.往往答案看起来十分切中要害,但是从看题目到得到思路 ...

  7. 001_IntelliJ IDEA详细安装步骤

    安装IntelliJ IDEA 一.安装JDK 1 下载最新的jdk,这里下的是jdk-8u66 2 将jdk安装到默认的路径C:\Program Files\Java目录下 二.安装IntelliJ ...

  8. Linux下性能调试工具运维笔记

    作为一名资深的linux运维工程师,为方便了解和追求服务器的高性能,如cpu.内存.io.网络等等使用情况,要求运维工程师必须要熟练运用一些必要的系统性能调试工具,liunx下提供了众多命令方便查看各 ...

  9. Jmeter(GUI模式)教程

    前些天,领导让我做接口的压力测试.What??我从未接触过这方面,什么都不知道,一脸蒙.于是我从学习jmeter开始入手. 现在记录下来jmeter的使用步骤,希望能对大家有所帮助. 一.安装Jmet ...

  10. bash处理一条命令的步骤

    Shell执行一条命令步骤 参考链接: <Learning the bash Shell, 3rd Edition  -- 7.3. Command-Line Processing> &l ...