BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析:
构造f[nk][r]表示题目中要求的东西。容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn)。
代码:
#include<bits/stdc++.h>
using namespace std; int n,p,k,r; long long mat[][];
long long g[][];
long long t[][]; void fast_pow(long long pw){
if(pw == ) {
for(int i=;i<k;i++) for(int j=;j<k;j++) g[i][j] = mat[i][j];
return;
}
fast_pow(pw/);
for(int i=;i<k;i++) for(int j=;j<k;j++) t[i][j] = g[i][j];
memset(g,,sizeof(g));
for(int o=;o<k;o++){
for(int i=;i<k;i++){
for(int j=;j<k;j++){
g[i][j] += (t[i][o]*t[o][j])%p;
g[i][j] %= p;
}
}
}
if(pw&){
for(int i=;i<k;i++) for(int j=;j<k;j++) t[i][j] = g[i][j];
memset(g,,sizeof(g));
for(int o=;o<k;o++){
for(int i=;i<k;i++){
for(int j=;j<k;j++){
g[i][j] += (t[i][o]*mat[o][j])%p;
g[i][j] %= p;
}
}
}
}
} void BuildMat(){
for(int i=;i<k;i++){
mat[i][i] += ; mat[i][(i-+k)%k] += ;
}
} void work(){
BuildMat();
fast_pow(1ll*n*k);
printf("%lld",g[r][]);
} int main(){
scanf("%d%d%d%d",&n,&p,&k,&r);
work();
return ;
}
BZOJ4870 [六省联考2017] 组合数问题 【快速幂】的更多相关文章
- [BZOJ4870][六省联考2017]组合数问题(组合数动规)
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 748 Solved: 398[Submit][Statu ...
- bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...
- P3746 [六省联考2017]组合数问题
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...
- 洛谷P3746 [六省联考2017]组合数问题
题目描述 组合数 C_n^mCnm 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...
- P3746 【[六省联考2017]组合数问题】
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...
- 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
- 六省联考2017 Day1
目录 2018.3.18 Test T1 BZOJ.4868.[六省联考2017]期末考试 T2 T3 BZOJ.4870.[六省联考2017]组合数问题(DP 矩阵快速幂) 总结 考试代码 T1 T ...
- 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)
[BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...
随机推荐
- php计算utf8字符串长度
strlen()函数计算中文字符不太友好.扩展的mb_strlen()函数可以补充这个.如果没有这个扩展,也可以利用正则匹配分解. 函数如下: // 对utf-8字符的长度 function utf8 ...
- [译]Kubernetes 分布式应用部署和人脸识别 app 实例
原文地址:KUBERNETES DISTRIBUTED APPLICATION DEPLOYMENT WITH SAMPLE FACE RECOGNITION APP 原文作者:skarlso 译文出 ...
- LB层到Real Server之间访问请求的响应时间及HTTP状态码监控及报警设置
为了监控到各业务的访问质量,基于LB层的Nginx日志,实现LB层到Real Server之间访问请求的响应时间(即upstream_response_time)及HTTP状态码(即upstream_ ...
- Puppet常识梳理
Puppet简单介绍 1)puppet是一种Linux/Unix平台下的集中配置管理系统,使用自有的puppet描述语言,可管理配置文件.用户.cron任务.软件包.系统服务等.puppet把这些系统 ...
- C_数据结构_递归不同函数间调用
# include <stdio.h> void f(); void g(); void k(); void f() { printf("FFFF\n"); g(); ...
- c++ 中关于一些变量不能声明的问题
j0,j1,jn,y0,y1,yn被c++中某些函数占用了,所以是不能被声明的,今天就遇到了这个问题,结果我在自己写的程序中找了半天都没找到重复申明的y1
- @Scheduled 定时
此文章记录在spring boot项目中的使用 1,在项目的启动类中加注解@EnableScheduling,表示此项目可以进行定时 @SpringBootApplication @EnableSch ...
- 【2016.3.18】作业 VS2015安装&单元测试(2)
- PairProject 电梯调度 【附加题】
[附加题] 改进电梯调度的interface 设计, 让它更好地反映现实, 更能让学生练习算法, 更好地实现信息隐藏和信息共享. 目前的设计有什么缺点, 你会如何改进它? 1.之前判断电梯是否闲置的函 ...
- 《Linux内核分析》期终总结&《Linux及安全》期中总结
<Linux内核分析>期终总结&<Linux及安全>期中总结 [李行之 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc. ...