bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)
平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权。
然后从刚才加的s->t分割出来的两面对应的两个点跑最短路,求出来的就是s到t的最小割。
要特判n==0||m==0的情况
然后我特判的那个点就T了一万次,在抄elijahqi巨佬的代码的时候才发现:
我是这样写的:
...
#define MIN(x,y) (x<y?x:y)
... ....ans=MIN(ans,read())
....
这能不T就有鬼了吧
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<cmath>
#include<ctime>
#include<set>
#define pa pair<int,int>
#define lowb(x) ((x)&(-(x)))
#define REP(i,n0,n) for(i=n0;i<=n;i++)
#define PER(i,n0,n) for(i=n;i>=n0;i--)
#define MAX(a,b) ((a>b)?a:b)
#define MIN(a,b) ((a<b)?a:b)
#define CLR(a,x) memset(a,x,sizeof(a))
#define rei register int
using namespace std;
const int maxn=;
typedef long long ll; ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b,l,ne;
}eg[maxn*maxn*];
int N,M,egh[maxn*maxn*],ect;
int id[maxn][maxn][],pct;
int dis[maxn*maxn*];bool flag[maxn*maxn*];
priority_queue<pa,vector<pa>,greater<pa> > q; inline void adeg(int a,int b,int l){
eg[ect].a=a;eg[ect].b=b;eg[ect].l=l;
eg[ect].ne=egh[a];egh[a]=ect++;
}
inline void adeg2(int a,int b,int c){adeg(a,b,c);adeg(b,a,c);} inline int dijkstra(int S,int E){
CLR(dis,);dis[S]=;
q.push(make_pair(,S));
while(!q.empty()){
int p=q.top().second;q.pop();
if(p==E) break;
if(flag[p]) continue;
for(rei i=egh[p];i!=-;i=eg[i].ne){
rei b=eg[i].b;
if(dis[b]>dis[p]+eg[i].l){
dis[b]=dis[p]+eg[i].l;
q.push(make_pair(dis[b],b));
}
}flag[p]=;
}return dis[E];
} int main(){
//freopen(".in","r",stdin);
rei i,j,k;
N=rd(),M=rd(); if(N==||M==){
if(N<M) swap(N,M);int ans=0x3f3f3f3f;
REP(i,,N-) ans=min(ans,(int)rd());printf("%d\n",ans);
return ;
}
CLR(egh,-);
id[][][]=++pct;id[][][]=++pct;
REP(i,,N-) REP(j,,M-) id[i][j][]=++pct,id[i][j][]=++pct;
REP(i,,N){
REP(j,,M-){
if(i==) adeg2(id[][j][],id[][][],rd());
else if(i==N) adeg2(id[N-][j][],id[][][],rd());
else adeg2(id[i-][j][],id[i][j][],rd());
}
}
REP(i,,N-){
REP(j,,M){
if(j==) adeg2(id[i][][],id[][][],rd());
else if(j==M) adeg2(id[i][M-][],id[][][],rd());
else adeg2(id[i][j-][],id[i][j][],rd());
}
}
REP(i,,N-){
REP(j,,M-){
adeg2(id[i][j][],id[i][j][],rd());
}
}
printf("%d\n",dijkstra(id[][][],id[][][])); return ;
}
bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)的更多相关文章
- [bzoj1001][BeiJing2006]狼抓兔子_网络流_最小割转对偶图
狼抓兔子 bzoj-1001 BeiJing2006 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还 ...
- BZOJ1001 BeiJing2006 狼抓兔子 【网络流-最小割】*
BZOJ1001 BeiJing2006 狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较 ...
- 【BZOJ1001】狼抓兔子(平面图转对偶图,最短路)
[BZOJ1001]狼抓兔子(平面图转对偶图,最短路) 题面 BZOJ 洛谷 题解 这题用最小割可以直接做 今天再学习了一下平面图转对偶图的做法 大致的思路如下: 1.将源点到汇点中再补一条不与任何线 ...
- 【BZOJ1001】狼抓兔子(网络流)
[BZOJ1001]狼抓兔子(网络流) 题面 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨, ...
- [BZOJ1001][BeiJing2006]狼抓兔子(最小割转最短路|平面图转对偶图)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 31805 Solved: 8494[Submit][ ...
- BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 19528 Solved: 4818[Submit][ ...
- bzoj1001: [BeiJing2006]狼抓兔子 -- 最小割
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼 ...
- bzoj1001: [BeiJing2006]狼抓兔子(初识是你最小割)
1001: [BeiJing2006]狼抓兔子 题目:传送门 题解: 听说这题当初是大难题...可惜当年没有网络流hahahha 现在用网络流的思想就很容易解决了嘛 给什么连什么,注意是双向边,然后跑 ...
- 【BZOJ1001】狼抓兔子
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 7530 Solved: 1724[Submit][S ...
随机推荐
- LeetCode之Add Two Numbers
Add Two Numbers 方法一: 考虑到有进位的问题,首先想到的思路是: 先分位求总和得到 totalsum,然后再将totalsum按位拆分转成链表: ListNode* addTwoNum ...
- vs2017+opencv4.0.1安装配置详解(win10)
一.说明 笔者之前已经安装过了vs2017,对应的opencv是3.4.0版本的.但现在想体验下opencv4的改变之处,所以下载了最新的opencv4.0.1. vs2017的安装请自行搜索安装,本 ...
- Linux运维笔记-日常操作命令总结(2)
回想起来,从事linux运维工作已近5年之久了,日常工作中会用到很多常规命令,之前简单罗列了一些命令:http://www.cnblogs.com/kevingrace/p/5985486.html今 ...
- Gitlab环境快速部署(RPM包方式安装)
之前梳理了一篇Gitlab的安装CI持续集成系统环境---部署Gitlab环境完整记录,但是这是bitnami一键安装的,版本比较老.下面介绍使用rpm包安装Gitlab,下载地址:https://m ...
- 线上mongodb 数据库用户到期时间修改的操作记录
登陆版权数据库,显示"此用户已到期",数据库使用的是mongodb,顾 需要将此用户的到期时间延长. 解决过程: 1)到网站对应tomcat配置里找出等里mongodb的信息(mo ...
- PairProject——结对编程
成员:12061162 王骜 12061225 钟毅恒 一.合作过程中的照片 . 二.结对编程的优缺点 优点: 1)在编程过程中,任何一段代码都不断地复审,同时避免了将写代码的责任抛给一个人的问题 ...
- Scrum Meeting 8
第八次会议 No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 No_11:照片记录 待更新 No_100:代码/文档签入记录 No_101:出席表 ...
- 2-Twenty Fifth Scrum Meeting-20151231
前言 因为服务器关闭,我们的开发项目也遭遇停滞一个星期.与网站开发负责人员协商之后,29号开放服务器.我们的项目也能够继续下去.比规定的开发时间(截止为2015/12/29)推迟. 事项安排 1.开发 ...
- 自定义视图(SpringMVC)
一.首先理解视图的解析过程 1)请求处理方法执行完成后,最终返回一个 ModelAndView 对象. ModelAndView 对象,它包含了逻辑名(访问URL)和模型对象(javaBean数据)的 ...
- FZU软工第五次作业-词组频率分析
目录 00.前言: 01.分工: 02.PSP表格: 03.解题思路描述与设计实现说明: 解题思路简述: 关键代码 04.附加题设计与展示: 设计的创意独到之处 实现思路 实现成果展示 05.关键代码 ...