4212: 神牛的养成计划

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 142  Solved: 30
[Submit][Status][Discuss]

Description

Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望......
 
后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神牛特征的基因序列都被破坏了,神牛hzwer很生气,但他知道基因突变的低频性,说不定还有以下优秀基因没有突变,那么他就可以用限制性核酸内切酶把它们切出来,然后再构建基因表达载体什么的,后面你懂的......
 
黄学长现在知道了N个细胞的DNA序列,它们是若干个由小写字母组成的字符串。一个优秀的基因是两个字符串s1和s2,当且仅当s1是某序列的前缀的同时,s2是这个序列的后缀时,hzwer认为这个序列拥有这个优秀基因。
 
现在黄学长知道了M个优秀基因s1和s2,它们想知道对于给定的优秀基因,有多少个细胞的DNA序列拥有它。
 

Input

第一行:N,表示序列数
接下来N行,每行一个字符串,代表N个DNA序列,它们的总长为L1
接下来一个M,表示询问数
接下来M行,每行两个字符串s1和s2,由一个空格隔开,hzwer希望你能在线回答询问,所以s1等于“s1”的所有字符按字母表的顺序向后移动ans位(字母表是一个环),ans为上一个询问的答案,s2同理。例如ans=2  “s1”=qz
则s1=sb。对于第一个询问,ans=0
s1和s2的总长度为L2
 

Output

输出M行,每行一个数,第i行的数表示有多少个序列拥有第i个优秀基因。
 

Sample Input

10
emikuqihgokuhsywlmqemihhpgijkxdukjfmlqlwrpzgwrwozkmlixyxniutssasrriafu
emikuqihgokuookbqaaoyiorpfdetaeduogebnolonaoehthfaypbeiutssasrriafu
emikuqihgokuorocifwwymkcyqevdtglszfzgycbgnpomvlzppwrigowekufjwiiaxniutssasrriafu
emikuqihgokuorociysgfkzpgnotajcfjctjqgjeeiheqrepbpakmlixyxniutssasrriafu
emikuqihgokuorociysgfrhulymdxsqirjrfbngwszuyibuixyxniutssasrriafu
emikuqihgokuorguowwiozcgjetmyokqdrqxzigohiutssasrriafu
emikuqihgokuorociysgsczejjmlbwhandxqwknutzgdmxtiutssasrriafu
emikuqihgokuorociysgvzfcdxdiwdztolopdnboxfvqzfzxtpecxcbrklvtyxniutssasrriafu
emikuqihgokuorocsbtlyuosppxuzkjafbhsayenxsdmkmlixyxniutssasrriafu
emikuqihgokuorociysgfjvaikktsixmhaasbvnsvmkntgmoygfxypktjxjdkliixyxniutssasrriafu
10
emikuqihgokuorociysg yxniutssasrriafu
aiegqmedckgqknky eqpoowonnewbq
xfbdnjbazhdnhkhvb qrqgbnmlltlkkbtyn
bjfhrnfedlhrlolzfv qppxpoofxcr
zhdfpldcbjf stsidponnvnmmdvap
zhdfpldcbjfpjmjxdt gdstsidponnvnmmdvap
dlhjtphgfnjtnqnbhxr wxwmhtsrrzrqqhzet
bjfhrnfedlhrlolzfv frqppxpoofxcr
zhdfpldcbjf dponnvnmmdvap
ucyakgyxweakehes nondykjiiqihhyqvk

Sample Output

4
7
3
5
5
1
3
5
10
4

HINT

N<=2000
L1<=2000000
M<=100000
L2<=2000000

Source

 

[Submit][Status][Discuss]

万古神牛黄学长 Orz

又是一道可持久化Trie好题。

先想暴力,每次先找出有所能匹配上前缀的串,然后在看看这些串里有多少个还能匹配上后缀,这些串的个数就是最终答案。

然后发现,每次靠前缀筛出来的所有串一定具有一段相同的前缀,这个有点像后缀数组的那种感觉,就是先对所有串按照前缀排序,不难看出每次找出的前缀合法的串一定排成一个区间,我们想访问这个区间的所有串的逆序Trie,这个就是可持久化Trie树了。

从DaD3zZ那里看到这道题的,他说感觉对串按照前缀排序时使用了C++的Sort函数,逐位比较两个串的大小貌似比较暴力;但是不难想到,我们先建出正序的Trie后,在Trie上按顺序(a->z)DFS出来的就是按前缀排好序的了,这样复杂度就是完美的$O(\sum{Length})$,轻松过掉2000000。貌似出题人比较友好(可能就是比较懒),出的数据有点水……

代码没有,懒得写了…… 懒癌晚期

UPDATE 写了一发代码,然后图省事用的string,然后cin就给RE了,下午发现问题改成scanf就可以了。

 #include <bits/stdc++.h>

 using namespace std;

 const int mxn = ;
const int mxm = ; inline void scan(string &s)
{
s.clear(); static char buf[mxm]; scanf("%s", buf); for (char *c = buf; *c; ++c)
s.push_back(*c);
} int n, m; int ord[mxn]; string str[mxn]; int end[mxm];
int son[mxm][]; int mini[mxm];
int maxi[mxm]; inline void insert(string &s, int id) {
static int tot = ; int p = , len = s.length(); for (int i = ; i < len; ++i) {
if (son[p][s[i] - 'a'] == )
son[p][s[i] - 'a'] = ++tot; p = son[p][s[i] - 'a'];
} end[p] = id;
} void getOrder(int p) {
static int cnt; mini[p] = cnt; if (end[p])
ord[++cnt] = end[p]; for (int i = ; i < ; ++i)
if (son[p][i])getOrder(son[p][i]); maxi[p] = cnt;
} int root[mxn]; int sum[mxm];
int nxt[mxm][]; void insert(int &t, int p, string &s, int d) {
static int tot = ; t = ++tot; sum[t] = sum[p] + ; memcpy(nxt[t], nxt[p], sizeof(nxt[t])); if (d < s.length())
insert(nxt[t][s[d] - 'a'], nxt[p][s[d] - 'a'], s, d + );
} inline void trie1(string &s, int &lt, int &rt, int ans) {
int p = , len = s.length(); for (int i = ; i < len; ++i)
s[i] = (s[i] - 'a' + ans) % + 'a'; lt = rt = ; for (int i = ; i < len; ++i)
p = son[p][s[i] - 'a']; lt = mini[p];
rt = maxi[p];
} inline void trie2(string &s, int lt, int rt, int &ans) {
int len = s.length(); reverse(s.begin(), s.end()); for (int i = ; i < len; ++i)
s[i] = (s[i] - 'a' + ans) % + 'a'; int a = root[lt], b = root[rt]; for (int i = ; i < len; ++i) {
a = nxt[a][s[i] - 'a'];
b = nxt[b][s[i] - 'a'];
} ans = sum[b] - sum[a];
} signed main(void) {
#ifndef ONLINE_JUDGE
freopen("in", "r", stdin);
freopen("out", "w", stdout);
#endif scanf("%d", &n); for (int i = ; i <= n; ++i)
scan(str[i]); for (int i = ; i <= n; ++i)
insert(str[i], i); getOrder(); for (int i = ; i <= n; ++i)
reverse(str[i].begin(), str[i].end()); for (int i = ; i <= n; ++i)
insert(root[i], root[i - ], str[ord[i]], ); scanf("%d", &m); for (int i = , lt, rt, ans = ; i <= m; ++i) {
static string s1, s2; scan(s1);
scan(s2); trie1(s1, lt, rt, ans);
trie2(s2, lt, rt, ans); printf("%d\n", ans);
}
}

@Author: YouSiki

BZOJ 4212: 神牛的养成计划的更多相关文章

  1. BZOJ.4212.神牛的养成计划(Trie 可持久化Trie)

    BZOJ 为啥hzw的题也是权限题啊 考虑能够匹配\(s1\)这一前缀的串有哪些性质.对所有串排序,能发现可以匹配\(s1\)的是一段区间,可以建一棵\(Trie\)求出来,设为\([l,r]\). ...

  2. BZOJ 4212: 神牛的养成计划 可持久化trie+trie

    思路倒是不难,但是这题卡常啊 ~ code: #include <bits/stdc++.h> #define N 2000004 #define M 1000005 #define SI ...

  3. 【BZOJ-4212】神牛的养成计划 Trie树 + 可持久化Trie树

    4212: 神牛的养成计划 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 136  Solved: 27[Submit][Status][Discus ...

  4. [BZOJ4212]神牛的养成计划

    [BZOJ4212]神牛的养成计划 试题描述 Hzwer 成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神 ...

  5. 【BZOJ4212】神牛的养成计划 Trie树+可持久化Trie树

    [BZOJ4212]神牛的养成计划 Description Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变 ...

  6. BZOJ4212 神牛的养成计划 (字典树,bitset)

    题面 Description Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望- 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神牛特征的基因序列都被破坏了, ...

  7. BZOJ第1页养成计划

    嗯,用这篇博客当一个目录,方便自己和学弟(妹?)们查阅.不定期更新. BZOJ1000   BZOJ1001   BZOJ1002   BZOJ1003   BZOJ1004   BZOJ1005   ...

  8. BZOJ第7页养成计划

    嗯,用这篇博客当一个目录,方便自己和学弟(妹?)们查阅.不定期更新. BZOJ1600   BZOJ1601   BZOJ1602   BZOJ1603   BZOJ1604   BZOJ1605   ...

  9. 【bzoj4212】神牛的养成计划

    Portal --> bzoj4212 Description ​ 给你\(n\)个字符串,接下来有\(m\)个询问,每个询问由两个给定的字符串\(s_1\)和\(s_2\)组成,对于每个询问输 ...

随机推荐

  1. Luogu P3825 [NOI2017]游戏

    这道题看上去NPC啊,超级不可做的样子. 我们先分析一下简单的情形:没有\(x\)地图 此时每个地图由于限制掉一种汽车,那么显然只会有两种选择. 再考虑到限制的情况,那么大致做法就很显然了--2-SA ...

  2. 2018 Multi-University Training Contest 1 部分简单题解析

    Preface ACM系列赛第一站,没有进前200还是很伤的. 主要是T2当时没写出来就GG了,后来看了下其实不是很难. 题目按照比赛时我们A的顺序讲,其实我都是被陈潇然大佬和ZWC带飞的. T1 M ...

  3. Docker(五):Docker 三剑客之 Docker Machine

    上篇文章Docker(四):Docker 三剑客之 Docker Compose介绍了 Docker Compose,这篇文章我们来了解 Docker Machine . Docker Machine ...

  4. vue 动态修改 css

    <div v-for="i in resultDate" v-if="i.ProjectId>='4'" @click=EveyTesttInfo( ...

  5. linux下配置squid 服务器,最简单使用方式

    https://blog.csdn.net/unixtech/article/details/53185297 squid 查看命中率 https://blog.csdn.net/cnbird2008 ...

  6. C++STL——优先队列

    一.相关定义 优先队列容器与队列一样,只能从队尾插入元素,从队首删除元素.但是它有一个特性,就是队列中最大的元素总是位于队首,所以出队时,并非按照先进先出的原则进行,而是将当前队列中最大的元素出队.这 ...

  7. pair work 附加题解法(张艺 杨伊)

    1.改进电梯调度的interface 设计, 让它更好地反映现实, 更能让学生练习算法, 更好地实现信息隐藏和信息共享,目前的设计有什么缺点, 你会如何改进它? 目前的缺点: (1)电梯由于载客重量不 ...

  8. 《Linux内核分析》第六周学习笔记

    <Linux内核分析>第六周学习笔记 进程的描述和创建 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/co ...

  9. android开发之Tabhost刷新

    在android中,使用tabHost的时候,如果tab被点击,该tab所对应的activity被加载了,从别的tab切换回来的时候,activity不会再次被创建了(onCreate),所以要想每次 ...

  10. 小学四则运算APP 第一个冲刺 第七天

    团队成员:陈淑筠.杨家安.陈曦 团队选题:小学四则运算APP 第一次冲刺阶段时间:11.17~11.27 本次发布的是完成的功能一: 程序代码: MainActivity代码: import andr ...