Description

  FGD开办了一家电话公司。他雇用了N个职员,给了每个职员一部手机。每个职员的手机里都存储有一些同事的

电话号码。由于FGD的公司规模不断扩大,旧的办公楼已经显得十分狭窄,FGD决定将公司迁至一些新的办公楼。FG

D希望职员被安置在尽量多的办公楼当中,这样对于每个职员来说都会有一个相对更好的工作环境。但是,为了联

系方便起见,如果两个职员被安置在两个不同的办公楼之内,他们必须拥有彼此的电话号码。

Input

  第一行包含两个整数N(2<=N<=100000)和M(1<=M<=2000000)。职员被依次编号为1,2,……,N.以下M行,每

行包含两个正数A和B(1<=A<b<=n),表示职员a和b拥有彼此的电话号码),li <= 1000

Output

  包含两行。第一行包含一个数S,表示FGD最多可以将职员安置进的办公楼数。第二行包含S个从小到大排列的

数,每个数后面接一个空格,表示每个办公楼里安排的职员数。

Sample Input

7 16

1 3

1 4

1 5

2 3

3 4

4 5

4 7

4 6

5 6

6 7

2 4

2 7

2 5

3 5

3 7

1 7

Sample Output

3

1 2 4

HINT

FGD可以将职员4安排进一号办公楼,职员5和职员7安排进2号办公楼,其他人进3号办公楼。

Solution

暴力过题,这种题就是个套路

将要访问的点放入一个链表,每次访问完这个点就将这个点在链表里删掉,扩展的时候也只扩展链表里有的点

复杂度不知道怎么证诶,反正其它地方有

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=100000+10,MAXM=2000000+10;
int n,m,e,beg[MAXN],nex[MAXM<<1],to[MAXM<<1],vis[MAXN],cnt[MAXN],ans,st;
struct node{
int val,pre,nxt;
};
node list[MAXN];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void bfs(int s)
{
cnt[ans]++;
st=list[s].nxt;
if(list[s].pre>=1)list[list[s].pre].nxt=list[s].nxt;
if(list[s].nxt<=n)list[list[s].nxt].pre=list[s].pre;
q.push(list[s].val);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])vis[to[i]]=1;
for(register int i=st;i<=n;i=list[i].nxt)
if(!vis[list[i].val])
{
if(st==i)st=list[i].nxt;cnt[ans]++;
if(list[i].pre>=1)list[list[i].pre].nxt=list[i].nxt;
if(list[i].nxt<=n)list[list[i].nxt].pre=list[i].pre;
q.push(list[i].val);
}
for(register int i=beg[x];i;i=nex[i])vis[to[i]]=0;
}
}
int main()
{
read(n);read(m);
REP(i,1,m)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
st=1;REP(i,1,n)list[i]=(node){i,i-1,i+1};
for(register int i=st;i<=n;i=st)ans++,bfs(i);
printf("%d\n",ans);
std::sort(cnt+1,cnt+ans+1);
REP(i,1,ans)printf("%d ",cnt[i]);
puts("");
return 0;
}

【刷题】BZOJ 1098 [POI2007]办公楼biu的更多相关文章

  1. bzoj 1098 [POI2007]办公楼biu bfs+补图+双向链表

    [POI2007]办公楼biu Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1543  Solved: 743[Submit][Status][Di ...

  2. [BZOJ 1098] [POI2007] 办公楼biu 【链表优化BFS】

    题目链接:BZOJ - 1098 题目分析 只有两个点之间有边的时候它们才能在不同的楼内,那么就是说如果两个点之间没有边它们就一定在同一座楼内. 那么要求的就是求原图的补图的连通块. 然而原图的补图的 ...

  3. BZOJ 1098 [POI2007]办公楼biu(反向图bfs+并查集优化)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1098 [题目大意] 现在有一张图,要求将这张图的点划分为尽量多的分组,对于不同分组的两 ...

  4. bzoj 1098 [POI2007]办公楼biu——链表

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1098 求补图的连通块大小.与自己没有边的和自己在一个连通块里. 用链表把所有点串起来.先给自 ...

  5. bzoj 1098 [POI2007] 办公楼 biu

    # 解题思路 画画图可以发现,只要是两个点之间没有相互连边,那么就必须将这两个人安排到同一个办公楼内,如图所示: 那,我们可以建立补图,就是先建一张完全图,然后把题目中给出的边都删掉,这就是一张补图, ...

  6. BZOJ 1098: [POI2007]办公楼biu 链表

    求补图连通块,用链表优化,势能O(n+m) #include<cstdio> #include<cstring> #include<iostream> #inclu ...

  7. 【BZOJ】1098: [POI2007]办公楼biu(补图+bfs+链表)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1098 显然答案是补图连通块..... 想到用并查集...可是连补图的边都已经...n^2了...怎么 ...

  8. bzoj 1098 poi2007 办公楼 bfs+链表

    题意很好理解,求给出图反图的联通块个数. 考虑这样一个事情:一个联通块里的点,最多只会被遍历一次,再遍历时没有任何意义 所以用链表来存,每遍历到一个点就将该点删掉 #include<cstdio ...

  9. BZOJ1098: [POI2007]办公楼biu

    从问题可以看出是求补图的连通块及点数 但补图太大.所以考虑缩小规模. 当一个点归属于一个连通块后,它以后就不需要了.所以可以用链表,删去这个点,也就减小了规模. 一个点开始bfs,每个点只会进队一次, ...

随机推荐

  1. Spring Boot 之订制 logo

    Spring Boot 之订制 logo 简介 变量 配置 编程 源码 引申和引用 Spring Boot 启动时默认会显示以下 logo: . ____ _ __ _ _ /\\ / ___'_ _ ...

  2. BZOJ4911: [Sdoi2017]切树游戏

    BZOJ 4911 切树游戏 重构了三次.jpg 每次都把这个问题想简单了.jpg 果然我还是太菜了.jpg 这种题的题解可以一眼秒掉了,FWT+动态DP简直是裸的一批... 那么接下来,考虑如何维护 ...

  3. React-引入图片的方法

    方法一: import imgURL from '../../images/logo.png'; <img src={imgURL} alt="1"/> 方法二: &l ...

  4. Unexpected error from external database driver (1)

    当尝试把Excel导入SQL时,发生此异常: Unexpected error from external database driver (1). 在网上查找到一个解决方法,网址http://dat ...

  5. Linux tar 解压 压缩(转)

     注:tar是打包,不是压缩!)  解包: tar xvf FileName.tar 打包:tar cvf FileName.tar DirName .tar.gz 解压:tar zxvf FileN ...

  6. 【转】Oracle virtual column(虚拟列)

    为什么要使用虚拟列 (1)可以为虚拟列创建索引(Oracle为其创建function index) (2)可以搜集虚拟列的统计信息statistics,为CBO提供一定的采样分析. (3)可以在whe ...

  7. QZEZ第一届“饭吉圆”杯程序设计竞赛

    终于到了饭吉圆杯的开赛,这是EZ我参与的历史上第一场ACM赛制的题目然而没有罚时 不过题目很好,举办地也很成功,为法老点赞!!! 这次和翰爷,吴骏达 dalao,陈乐扬dalao组的队,因为我们有二个 ...

  8. ABPZero中的Name和SurName处理,以及EmailAddress解决方案(完美)。

    使用ABPzero的朋友们都知道,User表中有Name和Surname两个字段,这两个字段对于国内的用户来说相当的不友好. 以及我们的一些系统中是不会涉及到EmailAddress字段.也就是说不会 ...

  9. Linux内核分析第四章 读书笔记

    Linux内核分析第四章 读书笔记 第一部分--进程调度 进程调度:操作系统规定下的进程选取模式 面临问题:多任务选择问题 多任务操作系统就是能同时并发地交互执行多个进程的操作系统,在单处理器机器上这 ...

  10. Spring中 @Autowired标签与 @Resource标签 的区别

    http://blog.csdn.net/angus_17/article/details/7543478 http://bbs.csdn.net/topics/390175654 https://w ...