MATLAB数值分析实验
1.用Newton迭代法求方程
的第一个正根.
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/
newton.m:
function x1=newton(x0,eps)
format long
format compact
x1=x0-dao(x0);
while abs(x1-x0)>eps
x0=x1;
x1=x0-dao(x0);
end dao.m:
function y=dao(x)
y=tan(x)-exp(x);
y1=tan(x)^2 - exp(x) + 1;
y=y/y1;
结果:
>> x1=newton(1,1e-6)
x1 =
1.306326940423080
2.作矩阵
的LU分解.
lu12.m:
function [l,u]=lu12(a,n)
for k=1:n-1
for i=k+1:n
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
end
end
end
l=eye(n);
u=zeros(n,n);
for k=1:n
for i=k:n
u(k,i)=a(k,i);
end
end
for k=1:n
for j=1:k-1
l(k,j)=a(k,j);
end
end 结果:
>> a=[4 1 1 1;8 5 1 3;12 -3 7 2;4 10 2 7];
>> [l,u]=lu12(a,4)
l =
1 0 0 0
2 1 0 0
3 -2 1 0
1 3 2 1
u =
4 1 1 1
0 3 -1 1
0 0 2 1
0 0 0 1
3.用Jacobi迭代法求解方程组
, 其中
.
jacobi.m:
function x=jacobi(a,b,x0,n,tol,m)
x=zeros(n,1);
for k=0:m
for i=1:n
s=0;
for j=1:n
if j~=i
s=s+a(i,j)*x0(j,1);
end
end
x(i,1)=(b(i,1)-s)/a(i,i);
if norm(x-x0,inf)<tol
break;
end
x0(i,1)=x(i,1);
end
end 结果:
>> a=[4 1 -1 1;-1 4 -1 1;1 2 5 -1;3 2 -1 7];
>> b=[2 8 8 10]';
>> x0=[0 0 0 0]';
>> x=jacobi(a,b,x0,4,1e-6,50)
x =
-0.000000983453000
2.000001278748222
0.999997309599650
0.999999964663427
4.用复化的辛甫生方法计算
.
simpson.m:
function [SI,Y,esp]=simpson(a,b,m)
%a,b为区间左右端点,xps(x)为求积公式,m*2等分区间长度
h=(b-a)/(2*m);
SI0=xps(a)+xps(b);
SI1=0;
SI2=0;
for i=1:((2*m)-1)
x=a+i*h;
if mod(i,2)==0
SI2=SI2+xps(x);
else
SI1=SI1+xps(x);
end
end
SI=vpa(h*(SI0+4*SI1+2*SI2)/3,10);
syms x
Y=vpa(int(xps(x),x,a,b),10);
esp=abs(Y-SI); xps.m:
function y=xps(x)
y=exp(x^2)-sin(x)/x; 结果:
>> [SI,Y,esp]=simpson(1,3,10)
SI =
1443.251264
Y =
1442.179902
esp =
1.0713621257845176160117262043059
5.用改进的尤拉法解方程 
euler22.m:
function [B1,B2]=euler22(a,b,n,y0)
%欧拉法解一阶常微分方程
%初始条件y0
h = (b-a)/n; %步长h
%区域的左边界a
%区域的右边界b
x = a:h:b;
m=length(x); %改进欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h/2*( oula2(x(i-1),y(i-1))+oula2(x(i),y(i-1))+h*(oula2(x(i-1),x(i-1))));
B1(i)=x(i);
B2(i)=y(i);
end
plot(x,y,'m-');
hold on; %精确解用作图
xx = x;
f = dsolve('Dy=exp(x-y)+(x^2)*exp(-y)','y(0)=0','x');%求出解析解
y = subs(f,xx); %将xx代入解析解,得到解析解对应的数值 plot(xx,y,'k--');
legend('改进欧拉法','解析解'); oula2.m:
function f=oula2(x,y)
f=exp(x-y)+(x^2)*exp(-y); 结果:
>> [B1,B2]=euler22(0,1,10,0)
B1 =
Columns 1 through 7
0 0.100000000000000 0.200000000000000 0.300000000000000 0.400000000000000 0.500000000000000 0.600000000000000
Columns 8 through 11
0.700000000000000 0.800000000000000 0.900000000000000 1.000000000000000
B2 =
Columns 1 through 7
0 0.110758545903782 0.222173861791736 0.335492896789537 0.451351722029268 0.569931474513367 0.691088488902808
Columns 8 through 11
0.814464555075657 0.939577860819895 1.065894210026593 1.192879090561291

6.(1) 用
拟合下列数据:
| x |
2.36 |
3.73 |
5.951 |
8.283 |
| f(x) |
14.1 |
16.2 |
18.3 |
21.4 |
LSM1.m:
function [a,b,c]=LSM1(x,y,m) %x,y为序列长度相等的数据向量,m为拟合多项式次数
format short;
A=zeros(m+1,m+1);
for i=0:m
for j=0:m
A(i+1,j+1)=sum(x.^(i+j));
end
b(i+1)=sum(x.^i.*y);
end
a=A\b';
p=fliplr(a');
%y=p[0]*x^m+p[1]*x^(m-1)+...+p[m-1]*x+p[m];
a=p(3);
b=p(2);
c=p(1); 结果:
>> x=[2.36 3.73 5.951 8.283];
>> y=[14.1 16.2 18.3 21.4];
>> [a,b,c]=LSM1(x,y,2)
a =
11.4457
b =
1.1866
c =
8.1204e-04
(2) 按如下插值原则,求Newton插值多项式:
| x |
2.36 |
3.73 |
5.951 |
8.283 |
| f(x) |
14.1 |
16.2 |
18.3 |
21.4 |
说明:最后,一定给清楚各多项式的系数!
newploy.m:
function [A,C,L,wcgs,Cw]= newploy(X,Y)
n=length(X); A=zeros(n,n); A(:,1)=Y';
q=1.0; c1=1.0;
for j=2:n
for i=j:n
A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));
end
b=poly(X(j-1));q1=conv(q,b); c1=c1*j; q=q1;
end
C=A(n,n); b=poly(X(n)); q1=conv(q1,b);
for k=(n-1):-1:1
C=conv(C,poly(X(k))); d=length(C); C(d)=C(d)+A(k,k);
end
L(k,:)=poly2sym(C); Q=poly2sym(q1);
syms M
wcgs=M*Q/c1; Cw=q1/c1; 结果:
>> x=[2.36 3.73 5.951 8.283];
>> y=[14.1 16.2 18.3 21.4];
>> [A,C,L,wcgs,Cw]= newploy(x,y)
A =
14.1000 0 0 0
16.2000 1.5328 0 0
18.3000 0.9455 -0.1636 0
21.4000 1.3293 0.0843 0.0418
C =
0.0418 -0.6674 4.4138 6.8506
L =
(3015319848353441*x^3)/72057594037927936 - (3005803726105311*x^2)/4503599627370496 + (4969523982821561*x)/1125899906842624 + 7713109820116169/1125899906842624
wcgs =
(M*(x^4 - (5081*x^3)/250 + (1273498286182623*x^2)/8796093022208 - (7485266609524121*x)/17592186044416 + 7633404131354389/17592186044416))/24
Cw =
0.0417 -0.8468 6.0325 -17.7287 18.0795 newpoly2.m:
function y= newpoly2(X,Y,x)
n=length(X); m=length(x);
for t=1:m
z=x(t); A=zeros(n,n);A(:,1)=Y';
q1=1.0; c1=1.0;
for j=2:n
for i=j:n
A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));
end
q1=abs(q1*(z-X(j-1)));c1=c1*j;
end
C=A(n,n);q1=abs(q1*(z-X(n)));
for k=(n-1):-1:1
C=conv(C,poly(X(k)));d=length(C); C(d)=C(d)+A(k,k);
end
y(k)= polyval(C, z); end
结果:
>> y= newpoly2(x,y,15)
y =
64.1181
MATLAB数值分析实验的更多相关文章
- 数值分析实验之曲线最小二乘拟合含有噪声扰动(python实现)
一.实验目的 掌握最小二乘法拟合离散数据,多项式函数形式拟合曲线以及可以其他可以通过变量变换转化为多项式的拟合曲线目前待实现功能: 1. 最小二乘法的基本实现. 2. 用不同数据量,不同参数,不同的多 ...
- matlab神经网络实验
第0节.引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集.Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set ...
- MATLAB数学实验总结
L1 MATLAB 基础知识 P6 表1-3 数据显示格式 format rat format long P20 表2-5 常用的矩阵函数 zeros(m,n) %零阵 eye(n) %单位阵 one ...
- matlab数学实验--第二章
控制流: 分支语句: if (条件式),语句:end if (条件式1),语句1:elseif (条件式2),语句2:……:else,语句:end iwitch(分支变量) case(值1),语句1: ...
- matlab数学实验--第一章
一. 数据和变量: 省略号(三个英文句点):表示换行 历史指令调用:用方向键上下 数据显示格式: format short ...
- 一个自带简易数据集的模拟线性分类器matlab代码——实验训练
%%%% Tutorial on the basic structure of using a planar decision boundary %%%% to divide a collecti ...
- 9、继续matlab数值分析
1.matlab拉格朗日插值 function yi=Lagrange(x,y,xi) %x为向量,全部的插值节点 %y为向量,插值节点处的函数值 %xi为标量或向量,被估计函数的自变量: %yi为x ...
- MATLAB模拟布丰投针实验
MATLAB模拟布丰投针实验 标签(空格分隔): 算法 Buffon's Needle 桌面上有距离为a的若干平行线,将长度为L的针随机丢在桌面上,则这根针与平行线相交的概率是多少?假定L < ...
- 史上最全的Matlab资源电子书教程和视频下载合集【超级推荐】
收藏吧,网上搜集的,费了老大劲了,推荐给有需要的人,^_^. MATLAB课件2007北京交通大学.zip 4.87 MB A Guide to MATLAB for Beginners an ...
随机推荐
- 从零开始学 Web 之 DOM(五)元素的创建
大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... +-------------------------------------------------------- ...
- Java并发编程笔记之ReentrantLock源码分析
ReentrantLock是可重入的独占锁,同时只能有一个线程可以获取该锁,其他获取该锁的线程会被阻塞后放入该锁的AQS阻塞队列里面. 首先我们先看一下ReentrantLock的类图结构,如下图所示 ...
- [译]ABP vNext微服务演示,项目状态和路线图
译注: ABP的主要负责人hikalkan最近又发布了一篇博客, 说明了ABP vNext的微服务演示,项目状态和路线图.其中特意对ABP的中文社区进行了感谢! 本文翻译自该博客文章(https:// ...
- php 获取中文字符串首字母
<?php $limit=array( //gb2312 拼音排序 array(45217,45252), //A array(45253,45760), //B array(45761,463 ...
- input框限制只能输入正整数、字母、小数、汉字
有时需要限制文本框输入内容的类型,本节分享下正则表达式限制文本框只能输入数字.小数点.英文字母.汉字等代码. 例如,输入大于0的正整数 代码如下: <input onkeyup="if ...
- [HEOI2017] 寿司餐厅 + 最大权闭合子图的总结
Description 太长了自己看叭 点这里! Solution 先学一波什么叫最大权闭合子图. 先要明白什么是闭合子图,闭合子图就是给定一个有向图,从中选择一些点组成一个点集V.对于V中任意一个点 ...
- c#连接访问数据库(菜鸡篇)
C#如何访问数据库(小白篇) 刚入坑不久学习的路上还是遇到了不小的问题,昨天学习C#的时候需要连接数据库获取数据. 网上有很多这样的文章,说实话对于我这样的小白还真是有点难理解,经过一番周折总算是了解 ...
- Vue动态新增对象属性
Vue.set( target, key, value ) 参数: {Object | Array} target {string | number} key {any} value 返回值:设置的值 ...
- C# 函数式编程:LINQ
一直以来,我以为 LINQ 是专门用来对不同数据源进行查询的工具,直到我看了这篇十多年前的文章,才发现 LINQ 的功能远不止 Query.这篇文章的内容比较高级,主要写了用 C# 3.0 推出的 L ...
- 找不到指定的模块 c#
首先查这个模块是否存在 若存在,用depends工具查找依赖模块,看下依赖模块是否存在, 依赖模块可以和模块放到同一路径下