1.用Newton迭代法求方程   的第一个正根.

作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/

newton.m:
function x1=newton(x0,eps)
format long
format compact
x1=x0-dao(x0);
while abs(x1-x0)>eps
x0=x1;
x1=x0-dao(x0);
end dao.m:
function y=dao(x)
y=tan(x)-exp(x);
y1=tan(x)^2 - exp(x) + 1;
y=y/y1;

结果:

>> x1=newton(1,1e-6)

x1 =

1.306326940423080

2.作矩阵  的LU分解.

lu12.m:
function [l,u]=lu12(a,n)
for k=1:n-1
for i=k+1:n
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
end
end
end
l=eye(n);
u=zeros(n,n);
for k=1:n
for i=k:n
u(k,i)=a(k,i);
end
end
for k=1:n
for j=1:k-1
l(k,j)=a(k,j);
end
end 结果:
>> a=[4 1 1 1;8 5 1 3;12 -3 7 2;4 10 2 7];
>> [l,u]=lu12(a,4)
l =
1 0 0 0
2 1 0 0
3 -2 1 0
1 3 2 1
u =
4 1 1 1
0 3 -1 1
0 0 2 1
0 0 0 1

3.用Jacobi迭代法求解方程组, 其中.

jacobi.m:
function x=jacobi(a,b,x0,n,tol,m)
x=zeros(n,1);
for k=0:m
for i=1:n
s=0;
for j=1:n
if j~=i
s=s+a(i,j)*x0(j,1);
end
end
x(i,1)=(b(i,1)-s)/a(i,i);
if norm(x-x0,inf)<tol
break;
end
x0(i,1)=x(i,1);
end
end 结果:
>> a=[4 1 -1 1;-1 4 -1 1;1 2 5 -1;3 2 -1 7];
>> b=[2 8 8 10]';
>> x0=[0 0 0 0]';
>> x=jacobi(a,b,x0,4,1e-6,50)
x =
-0.000000983453000
2.000001278748222
0.999997309599650
0.999999964663427

  4.用复化的辛甫生方法计算.

simpson.m:
function [SI,Y,esp]=simpson(a,b,m)
%a,b为区间左右端点,xps(x)为求积公式,m*2等分区间长度
h=(b-a)/(2*m);
SI0=xps(a)+xps(b);
SI1=0;
SI2=0;
for i=1:((2*m)-1)
x=a+i*h;
if mod(i,2)==0
SI2=SI2+xps(x);
else
SI1=SI1+xps(x);
end
end
SI=vpa(h*(SI0+4*SI1+2*SI2)/3,10);
syms x
Y=vpa(int(xps(x),x,a,b),10);
esp=abs(Y-SI); xps.m:
function y=xps(x)
y=exp(x^2)-sin(x)/x; 结果:
>> [SI,Y,esp]=simpson(1,3,10)
SI =
1443.251264
Y =
1442.179902
esp =
1.0713621257845176160117262043059

  5.用改进的尤拉法解方程 

euler22.m:
function [B1,B2]=euler22(a,b,n,y0)
%欧拉法解一阶常微分方程
%初始条件y0
h = (b-a)/n; %步长h
%区域的左边界a
%区域的右边界b
x = a:h:b;
m=length(x); %改进欧拉法
y = y0;
for i=2:m
y(i)=y(i-1)+h/2*( oula2(x(i-1),y(i-1))+oula2(x(i),y(i-1))+h*(oula2(x(i-1),x(i-1))));
B1(i)=x(i);
B2(i)=y(i);
end
plot(x,y,'m-');
hold on; %精确解用作图
xx = x;
f = dsolve('Dy=exp(x-y)+(x^2)*exp(-y)','y(0)=0','x');%求出解析解
y = subs(f,xx); %将xx代入解析解,得到解析解对应的数值 plot(xx,y,'k--');
legend('改进欧拉法','解析解'); oula2.m:
function f=oula2(x,y)
f=exp(x-y)+(x^2)*exp(-y); 结果:
>> [B1,B2]=euler22(0,1,10,0)
B1 =
Columns 1 through 7
0 0.100000000000000 0.200000000000000 0.300000000000000 0.400000000000000 0.500000000000000 0.600000000000000
Columns 8 through 11
0.700000000000000 0.800000000000000 0.900000000000000 1.000000000000000
B2 =
Columns 1 through 7
0 0.110758545903782 0.222173861791736 0.335492896789537 0.451351722029268 0.569931474513367 0.691088488902808
Columns 8 through 11
0.814464555075657 0.939577860819895 1.065894210026593 1.192879090561291

  

6.(1) 用拟合下列数据:

 x

2.36

3.73

5.951

8.283

 f(x)

14.1

16.2

18.3

21.4

LSM1.m:
function [a,b,c]=LSM1(x,y,m) %x,y为序列长度相等的数据向量,m为拟合多项式次数
format short;
A=zeros(m+1,m+1);
for i=0:m
for j=0:m
A(i+1,j+1)=sum(x.^(i+j));
end
b(i+1)=sum(x.^i.*y);
end
a=A\b';
p=fliplr(a');
%y=p[0]*x^m+p[1]*x^(m-1)+...+p[m-1]*x+p[m];
a=p(3);
b=p(2);
c=p(1); 结果:
>> x=[2.36 3.73 5.951 8.283];
>> y=[14.1 16.2 18.3 21.4];
>> [a,b,c]=LSM1(x,y,2)
a =
11.4457
b =
1.1866
c =
8.1204e-04

(2) 按如下插值原则,求Newton插值多项式:

 x

2.36

3.73

5.951

8.283

 f(x)

14.1

16.2

18.3

21.4

说明:最后,一定给清楚各多项式的系数!

newploy.m:
function [A,C,L,wcgs,Cw]= newploy(X,Y)
n=length(X); A=zeros(n,n); A(:,1)=Y';
q=1.0; c1=1.0;
for j=2:n
for i=j:n
A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));
end
b=poly(X(j-1));q1=conv(q,b); c1=c1*j; q=q1;
end
C=A(n,n); b=poly(X(n)); q1=conv(q1,b);
for k=(n-1):-1:1
C=conv(C,poly(X(k))); d=length(C); C(d)=C(d)+A(k,k);
end
L(k,:)=poly2sym(C); Q=poly2sym(q1);
syms M
wcgs=M*Q/c1; Cw=q1/c1; 结果:
>> x=[2.36 3.73 5.951 8.283];
>> y=[14.1 16.2 18.3 21.4];
>> [A,C,L,wcgs,Cw]= newploy(x,y)
A =
14.1000 0 0 0
16.2000 1.5328 0 0
18.3000 0.9455 -0.1636 0
21.4000 1.3293 0.0843 0.0418
C =
0.0418 -0.6674 4.4138 6.8506
L =
(3015319848353441*x^3)/72057594037927936 - (3005803726105311*x^2)/4503599627370496 + (4969523982821561*x)/1125899906842624 + 7713109820116169/1125899906842624
wcgs =
(M*(x^4 - (5081*x^3)/250 + (1273498286182623*x^2)/8796093022208 - (7485266609524121*x)/17592186044416 + 7633404131354389/17592186044416))/24
Cw =
0.0417 -0.8468 6.0325 -17.7287 18.0795 newpoly2.m:
function y= newpoly2(X,Y,x)
n=length(X); m=length(x);
for t=1:m
z=x(t); A=zeros(n,n);A(:,1)=Y';
q1=1.0; c1=1.0;
for j=2:n
for i=j:n
A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));
end
q1=abs(q1*(z-X(j-1)));c1=c1*j;
end
C=A(n,n);q1=abs(q1*(z-X(n)));
for k=(n-1):-1:1
C=conv(C,poly(X(k)));d=length(C); C(d)=C(d)+A(k,k);
end
y(k)= polyval(C, z); end
结果:
>> y= newpoly2(x,y,15)
y =
64.1181

MATLAB数值分析实验的更多相关文章

  1. 数值分析实验之曲线最小二乘拟合含有噪声扰动(python实现)

    一.实验目的 掌握最小二乘法拟合离散数据,多项式函数形式拟合曲线以及可以其他可以通过变量变换转化为多项式的拟合曲线目前待实现功能: 1. 最小二乘法的基本实现. 2. 用不同数据量,不同参数,不同的多 ...

  2. matlab神经网络实验

    第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的测试数据集.Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  ...

  3. MATLAB数学实验总结

    L1 MATLAB 基础知识 P6 表1-3 数据显示格式 format rat format long P20 表2-5 常用的矩阵函数 zeros(m,n) %零阵 eye(n) %单位阵 one ...

  4. matlab数学实验--第二章

    控制流: 分支语句: if (条件式),语句:end if (条件式1),语句1:elseif (条件式2),语句2:……:else,语句:end iwitch(分支变量) case(值1),语句1: ...

  5. matlab数学实验--第一章

    一.            数据和变量: 省略号(三个英文句点):表示换行 历史指令调用:用方向键上下 数据显示格式:                    format short          ...

  6. 一个自带简易数据集的模拟线性分类器matlab代码——实验训练

      %%%% Tutorial on the basic structure of using a planar decision boundary %%%% to divide a collecti ...

  7. 9、继续matlab数值分析

    1.matlab拉格朗日插值 function yi=Lagrange(x,y,xi) %x为向量,全部的插值节点 %y为向量,插值节点处的函数值 %xi为标量或向量,被估计函数的自变量: %yi为x ...

  8. MATLAB模拟布丰投针实验

    MATLAB模拟布丰投针实验 标签(空格分隔): 算法 Buffon's Needle 桌面上有距离为a的若干平行线,将长度为L的针随机丢在桌面上,则这根针与平行线相交的概率是多少?假定L < ...

  9. 史上最全的Matlab资源电子书教程和视频下载合集【超级推荐】

    收藏吧,网上搜集的,费了老大劲了,推荐给有需要的人,^_^.   MATLAB课件2007北京交通大学.zip 4.87 MB   A Guide to MATLAB for Beginners an ...

随机推荐

  1. 从零开始学 Web 之 DOM(二)对样式的操作,获取元素的方式

    大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...

  2. Eureka多机高可用

    线上Eureka高可用集群,至少三个节点组成一个集群,推荐部署在不同的服务器上,IP用域名绑定,端口保持一致. 10.1.22.26:876210.1.22.27:876210.1.22.28:876 ...

  3. 目标检测模型的性能评估--MAP(Mean Average Precision)

    目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同 ...

  4. C++中返回引用和返回值的区别

    转自https://www.cnblogs.com/JMLiu/p/7928425.html 一.主要讨论下面两个函数的区别: int& at() { return m_data_; } in ...

  5. shiro源码篇 - shiro的session共享,你值得拥有

    前言 开心一刻 老师对小明说:"乳就是小的意思,比如乳猪就是小猪,乳名就是小名,请你用乳字造个句" 小明:"我家很穷,只能住在40平米的乳房" 老师:" ...

  6. [转]在Node.js中使用RabbitMQ系列一 Hello world

    本文转自:https://www.cnblogs.com/cpselvis/p/6288330.html 在前一篇文章中可伸缩架构简短系列中提到过关于异步的问题.当时推荐使用RabbitMQ来做任务队 ...

  7. [android] 手机卫士保存安全号码

    调用ListView对象的setOnItemClickListener()方法,设置条目的点击事件,参数:OnItemClickListener对象 使用匿名内部类实现,重写onClick()方法,传 ...

  8. 移动端meta整理

    <!doctype html> <html> <head> <meta charset="utf-8"> <meta http ...

  9. HDU5887(SummerTrainingDay01-D)

    Herbs Gathering Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  10. python爬虫实例--网易云音乐排行榜爬虫

    网易云音乐,以前是有个api 链接的json下载的,现在没了, 只有音乐id,title , 只能看播放请求了, 但是播放请求都是加密的值,好坑... 进过各种努力, 终于找到了个大神写的博客,3.6 ...