Luogu 1314 【NOIP2011】聪明的质检员 (二分)

Description

小 T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有n个矿石,从 1 到n逐一编号,每个矿石都有自己的重量wi以及价值vi。检验矿产的流程是:

  1. 给定 m个区间[Li,Ri];
  2. 选出一个参数W;
  3. 对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi:

\[Y_i= \sum_{j} 1×\sum _{j}v_j,j \in [L_i,R_i],W_j>=W
\]

这批矿产的检验结果Y为各个区间的检验值之和。即:

\[Y=\sum_{i=1}^{m}Y_i
\]

若这批矿产的检验结果与所给标准值 S相差太多,就需要再去检验另一批矿产。小 T 不想费时间去检验另一批矿产,所以他想通过调整参数W的值,让检验结果尽可能的靠近标准值 S,即使得S−Y的绝对值最小。请你帮忙求出这个最小值。

Input

第一行包含三个整数n,m,S,分别表示矿石的个数、区间的个数和标准值。

接下来的n 行,每行2 个整数,中间用空格隔开,第i+1 行表示i 号矿石的重量wi 和价值vi 。

接下来的m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li,Ri]的两个端点Li 和Ri。注意:不同区间可能重合或相互重叠。

Output

输出只有一行,包含一个整数,表示所求的最小值。

Sample Input

5 3 15

1 5

2 5

3 5

4 5

5 5

1 5

2 4

3 3

Sample Output

10

Http

Luogu:https://www.luogu.org/problem/show?pid=1314

Source

二分

题目大意

给出n组二元组和m个区间,现在定义一个区间上的检验结果为这个区间上所有二元组中,第一个数大于W的二元组的第二个数*这些二元组的个数。定义整个的检验结果为给定的m个区间的检验结果之和。将整个的检验结果与一给定的标准值相比,两者之差的绝对值即为这个W对应的答案。现在求W让这个答案最小,求出最小值。

解决思路

讲题目的思路理清后,我们可以想到二分W的值。因为这个整个的检验结果与W是保持单调的,若W增大,则检验结果变小,反之变大。

所以我们可以二分W,每次二分出W后,计算一下其检验结果,若检验结果大于给定的S,则将左端点右移,否则将右端点左移。注意,最后输出的答案是每一次的检验结果与S作差的绝对值的最小值。

至于计算检验结果,因为题中给定的都是区间,所以我们可以每找出一个W后\(O(n)\)计算一下前缀和,然后\(O(1)\)地计算区间和。

注意,所有的变量都要开long long。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; #define ll long long const int maxN=300000;
const int inf=2147483647; ll n,m,S;
ll Ans=1e13;
ll Weight[maxN];
ll Value[maxN];
ll Rangel[maxN];
ll Ranger[maxN];
ll Sum[maxN];
ll Cnt[maxN]; ll read();
bool Solve(ll nowW); int main()
{
n=read();
m=read();
S=read();
ll l=0,r=0;
for (int i=1;i<=n;i++)
{
Weight[i]=read();
Value[i]=read();
r=max(r,Weight[i]);//r取最大值
}
for (int i=1;i<=m;i++)
{
Rangel[i]=read();
Ranger[i]=read();
}
r=r+100;//为了防止出错,扩大上限
while (l<=r)//二分W
{
ll mid=(l+r)>>1;
if (Solve(mid))
l=mid+1;
else
r=mid-1;
//cout<<l<<" "<<r<<endl;
}
cout<<Ans<<endl;
return 0;
} ll read()
{
ll x=0;
char ch=getchar();
while ((ch<'0')||(ch>'9'))
ch=getchar();
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x;
} bool Solve(ll nowW)
{
Sum[0]=0;
Cnt[0]=0;
for (int i=1;i<=n;i++)//计算前缀和,Sum是价值之和,Cnt是人数之和
{
Sum[i]=Sum[i-1]+((Weight[i]>=nowW)?(Value[i]):0);
Cnt[i]=Cnt[i-1]+((Weight[i]>=nowW)?1:0);
}
ll tot=0;
for (int i=1;i<=m;i++)//计算区间贡献之和
tot+=(Sum[Ranger[i]]-Sum[Rangel[i]-1])*(Cnt[Ranger[i]]-Cnt[Rangel[i]-1]);
Ans=min(Ans,abs(tot-S));//取最优值
if (tot>=S)
return 1;
return 0;
}

Luogu 1314 【NOIP2011】聪明的质检员 (二分)的更多相关文章

  1. Luogu 1314 [NOIP2011] 聪明的质监员

    二分答案 + 前缀和. 题面中式子的意思是每一个区间$[l, r]$的贡献是这个区间内$w_i \geq W$的个数乘以这些$i$的$v_i$和. 很快发现了答案具有单调性,可以做两遍二分,分别看看小 ...

  2. [NOIP2011] 聪明的质检员(二分答案)

    题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[L ...

  3. NOIP2015聪明的质检员[二分 | 预处理]

    背景 NOIP2011 day2 第二题 描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿 ...

  4. [NOIP2011] 聪明的质监员 二分+前缀和

    考试的时候打的二分但没有用前缀和维护.但是有个小细节手误打错了结果挂掉了. 绝对值的话可能会想到三分,但是注意到w增大的时候y是减小的,所以单调性很明显,用二分就可以.但注意一个问题,就是二分最后的结 ...

  5. [NOIP2011]聪明的质检员

    [问题描述] 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有$n$个矿石,从 1 到$n$逐一编号,每个矿石都有自己的重量$w_i$以及价值$v_i$.检验矿产的流程是: 1. 给 ...

  6. [NOIP 2011] 聪明的质检员

    聪明的质检员 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是:1.给定m个区间[Li,Ri ...

  7. NOIP2011聪明的质监员题解

    631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督 ...

  8. NC16597 [NOIP2011]聪明的质监员

    NC16597 [NOIP2011]聪明的质监员 题目 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 \(n\) 个矿石,从 \(1\) 到 \(n\) 逐一编号,每个矿 ...

  9. Luogu P1314 聪明的质监员(二分+前缀和)

    P1314 聪明的质监员 题意 题目描述 小\(T\)是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有\(n\)个矿石,从\(1\)到\(n\)逐一编号,每个矿石都有自己的重量\(w_i\) ...

随机推荐

  1. proxy_pass反向代理配置中url后面加不加/的说明

    在日常的web网站部署中,经常会用到nginx的proxy_pass反向代理,有一个配置需要弄清楚:配置proxy_pass时,当在后面的url加上了/,相当于是绝对根路径,则nginx不会把loca ...

  2. python基础学习笔记(一)

    安装与运行交互式解释器 在绝大多数linux和 UNIX系统安装中(包括Mac OS X),Python的解释器就已经存在了.我们可以在提示符下输入python命令进行验证(作者环境ubuntu) f ...

  3. 个人对vuex的表象理解(笔记)

    一个东西,首先要知道为什么用它,为什么要vuex,官方解释为了解决繁杂事件订阅和广播,那么事件的$dispatch,$on,怎么就复杂了?许多人是不是感觉后者还挺简单的,对的 如果简单小型项目,那么不 ...

  4. js 基础-&& || 逻辑与和逻辑或

    今天百度发现一个简化长if   else if 语句的方法,看起来及其强大,感觉这样虽然对系统性能提升没有帮助但是代码更简练了,分析了一番,下面先说说自己学到的理论. 首先要弄清楚js 中对于 变量, ...

  5. 201306114357-实验3-C语言

    #include<stdio.h>#include <stdlib.h>#include <time.h>main(){ int a,b,c,n,u,i,sum;  ...

  6. JavaScript&HTML DOM

    1.JavaScript介绍 Javascript语言诞生主要是完成页面的数据验证.因此它运行在客户端,需要运行浏览器来解析执行JavaScript代码. JS是Netscape网景公司的产品,最早取 ...

  7. JS 柯里化 (curry)

    用 JS 理解柯里化 函数式编程风格,试图以函数作为参数传递(回调)和无副作用的返回函数(修改程序的状态). 很多语言采用了这种编程风格.JavaScript,Haskell,Clojure,Erla ...

  8. Android动画总结

    本文总结常用属性方法等,详细学习可使用如下郭霖大神文章: Android属性动画完全解析(上),初识属性动画的基本用法 Android属性动画完全解析(中),ValueAnimator和ObjectA ...

  9. ES6.0简单了解

    Case 1:let.const var的缺陷 1.可以重复声明变量 2.无法限制修改(没有常量) 3.没有块级作用域 let和const可以弥补var的缺陷 let: 不能重复声明,用来声明变量,声 ...

  10. Golang的panic和recover

    panic 关键字panic的作用是制造一次宕机,宕机就代表程序运行终止,但是已经“生效”的延迟函数仍会执行(即已经压入栈的defer延迟函数,panic之前的). 为什么要制造宕机呢?是因为宕机不容 ...