STM32串口DMA超时接收方法,可大大节约CPU时间
#define UART1_TimeoutComp 2 //20ms
#define UART2_TimeoutComp 10 //100ms
#define UART3_TimeoutComp 10 //100ms
u8 UART1_Timeout,UART2_Timeout,UART3_Timeout;
u16 UART1_FlagTemp,UART2_FlagTemp,UART3_FlagTemp;
u8 uart1_data_temp[200],uart2_data_temp[500],uart3_data_temp[500];
//定时器初始化
void TimerInit(void)
{
//定时器初始化数据结构定义
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
//初始化定时器,用于超时接收,20ms
TIM_TimeBaseStructure.TIM_Period = 100; //计数上限,100*100us = 10000us = 10ms
TIM_TimeBaseStructure.TIM_Prescaler = 4799; //预分频4800,48MHz主频,分频后时钟周期100us
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //不分频
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
TIM_TimeBaseStructure.TIM_RepetitionCounter=0;
//初始化
TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);
DMA_DeInit(DMA1_Channel5); //将DMA的通道1寄存器重设为缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)SRC_USART1_DR; //源头BUF既是 (&(USART1->DR))
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)uart1_data_temp; //目标BUF 既是要写在哪个个数组之中
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //外设作源头//外设是作为数据传输的目的地还是来源
DMA_InitStructure.DMA_BufferSize = 200; //DMA缓存的大小 单位在下边设定
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不递增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //外设字节为单位
DMA_InitStructure.DMA_MemoryDataSize = DMA_PeripheralDataSize_Byte; //内存字节为单位
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //工作在循环缓存模式
DMA_InitStructure.DMA_Priority = DMA_Priority_High; //4优先级之一的(高优先)VeryHigh/High/Medium/Low
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //非内存到内存
DMA_Init(DMA1_Channel5, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道1寄存器
DMA_ITConfig(DMA1_Channel5, DMA_IT_TC, ENABLE); //DMA5传输完成中断
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE); //使能USART1的接收DMA请求
//串口初始化,只列出一个通道,其他两个通道相同
void USART1_Configuration(void)
{
//串口初始化数据结构定义
USART_InitTypeDef USART_InitStructure;
//定时器中断服务程序
void TIM2_IRQHandler(void)
{
u16 i;
//清定时器中断
TIM_ClearITPendingBit(TIM2, TIM_FLAG_Update);
if(i!=uart1_Flag_last) //未完成传输
{
UART1_Timeout=0;
uart1_Flag_last=i;
}
else
{
if(UART1_Timeout>UART1_TimeoutComp) //产生超时
{
if(i<200) //有数据接收到
{
UART1_FlagTemp=200-i; //得到接收到的字节数
for(i=0;i<UART1_FlagTemp;i++) //将数据拷贝到缓冲区
uart1_data[i]=uart1_data_temp[i];
UART1_Flag=UART1_FlagTemp;
DMA_ClearFlag(DMA1_FLAG_TC5);
DMA_Cmd(DMA1_Channel5, DISABLE); //正式允许DMA
DMA5_Init();
}
UART1_Timeout=0;
}
}
//------------------------------------------------------------------
i=DMA_GetCurrDataCounter(DMA1_Channel6);
DMA_ClearITPendingBit(DMA1_IT_GL6); //清除全部中断标志
for(i=0;i<UART2_FlagTemp;i++) //将数据拷贝到缓冲区
uart2_data[i]=uart2_data_temp[i];
UART2_Flag=UART2_FlagTemp;
DMA_ClearFlag(DMA1_FLAG_TC6);
DMA_Cmd(DMA1_Channel6, DISABLE); //正式允许DMA
DMA6_Init();
}
UART2_Timeout=0;
}
}
//------------------------------------------------------------------
i=DMA_GetCurrDataCounter(DMA1_Channel3);
DMA_ClearITPendingBit(DMA1_IT_GL3); //清除全部中断标志
for(i=0;i<UART3_FlagTemp;i++) //将数据拷贝到缓冲区
uart3_data[i]=uart3_data_temp[i];
UART3_Flag=UART3_FlagTemp;
DMA_ClearFlag(DMA1_FLAG_TC3);
DMA_Cmd(DMA1_Channel3, DISABLE); //正式允许DMA
DMA3_Init();
}
UART3_Timeout=0;
}
}
}
STM32串口DMA超时接收方法,可大大节约CPU时间的更多相关文章
- STM32 串口DMA方式接收(转)
STM32 是一款基于ARM Cortex-M3内核的32位MCU,主频最高可达72M.最近因为要在车机上集成TPMS功能, 便开始着手STM32的开发工作,STM32F10x系列共有5个串口(USA ...
- STM32 HAL库利用DMA实现串口不定长度接收方法
参考:https://blog.csdn.net/u014470361/article/details/79206352 我这里使用的芯片是 F1 系列的,主要是利用 DMA 数据传输方式实现的,在配 ...
- STM32串口DMA接收数据错位——暴力解决方法
背景:两片STM32通过串口通信,为了减小CPU负担,采用DMA进行通信,发送端为STM32F103C8T6,接收端为STM32F407VET6.在调试的过程中发现,一直出现数据错位的问题,接收端尝试 ...
- STM32串口USART1的使用方法和程序
通用同步异步收发器(USART)提供了一种灵活的方法来与使用工业标准NR 异步串行数据格式的外部设备之间进行全双工数据交换. USART利用分数波特率发生器提供宽范围的波特率选择,支持同步单向通信和半 ...
- STM32串口USART的使用方法和程序
通用同步异步收发器(USART)提供了一种灵活的方法来与使用工业标准NR 异步串行数据格式的外部设备之间进行全双工数据交换. USART利用分数波特率发生器提供宽范围的波特率选择,支持同步单向通信和半 ...
- STM32串口USART1的使用方法
前言: 通用同步异步收发器(USART)提供了一种灵活的方法来与使用工业标准NR 异步串行数据格式的外部设备之间进行全双工数据交换. USART利用分数波特率发生器提供宽范围的 波特率选择,支持同 ...
- STM32 ~ 串口DMA通道查找
STM32F4XX: /**************************************************************************************** ...
- STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制,轻松跑上 2M 波特率
前言 直接储存器访问(Direct Memory Access,DMA),允许一些设备独立地访问数据,而不需要经过 CPU 介入处理.因此在访问大量数据时,使用 DMA 可以节约可观的 CPU 处理时 ...
- STM32之串口DMA接收不定长数据
STM32之串口DMA接收不定长数据 引言 在使用stm32或者其他单片机的时候,会经常使用到串口通讯,那么如何有效地接收数据呢?假如这段数据是不定长的有如何高效接收呢? 同学A:数据来了就会进入串口 ...
随机推荐
- Codeforces.1110F.Nearest Leaf(线段树)
题目链接 \(dls\)讲过这道题,所以这不是线段树裸题吗,这场没打气气气气气=-= 现在是写着玩=v= \(Description\) 给定一棵\(n\)个点的树.\(q\)次询问,每次询问给定\( ...
- idea中Hibernate反向生成工具
HIbernate反向生成工具 1.使用idea数据库集成工具连接所需数据库 第一步 View-->Tool windows---->Database 第二步 找到所需连接的数据库 第三步 ...
- linux上安装mysql,亲试成功
安装mysql参考 网址https://blog.csdn.net/a774630093/article/details/79270080 本文更加详细. 1.先检查系统是否装有mysql rpm - ...
- Map不同具体实现类的比较和应用场景的分析
1.Map的概括总结 (01) Map 是“键值对”映射的抽象接口.(02) AbstractMap 实现了Map中的绝大部分函数接口.它减少了“Map的实现类”的重复编码.(03) SortedMa ...
- SparkStreaming “Could not read data from write ahead log record” 报错分析解决
# if open wal org.apache.spark.SparkException: Could not read data from write ahead log record FileB ...
- openstack 之~keystone部署
第一:版本信息 官网http://docs.openstack.org/newton/install-guide-rdo/keystone.html 我们按照Newton这个版本来部署,opensta ...
- Spring(2)—IOC
一.Spring IOC是什么 1.简述 Spring是一个开源框架 Spring为简化企业级应用开发而生,使用Spring可以使简单的JavaBean实现以前只有EJB才能实现的功能 Spring是 ...
- html的文字样式、下行线、删除线、上标、下标等实现方式
先看效果如下: 代码如下: <del>del标签删除线</del><br/> <strike>strike标签删除线</strike>< ...
- 基于AllegroGraph实现Protege设计知识库模型的存储步骤
在 https://www.w3.org/2001/sw/wiki/Protege 网站看到以下词语: “.....The Protégé platform supports two main way ...
- 用C++实现半透明按钮控件(PNG,GDI+)
使用MFC实现上面的按钮半透明效果能看到父窗口中的内容,上面是效果图(一个是带背景图片的.另一个是不带的). 控件继承自CWnd类(彩色的部分是窗口的背景图片.按钮是PNG图片,第二个图标是鼠 ...