Reinforcement-Learning-Introduction-Adaptive-Computation

http://incompleteideas.net/book/bookdraft2017nov5.pdf

http://incompleteideas.net/book/ebook/the-book.html

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262193981

https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf

http://videolectures.net/deeplearning2017_montreal/

http://www.clipconverter.cc/

Reinforcement Learning--David Silver

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

https://www.youtube.com/watch?v=2pWv7GOvuf0

COMBINING POLICY GRADIENT AND Q-LEARNING

https://arxiv.org/pdf/1611.01626.pdf

https://www.quora.com/Whats-the-difference-between-reinforcement-Learning-and-Deep-learning

https://stats.stackexchange.com/questions/144154/supervised-learning-unsupervised-learning-and-reinforcement-learning-workflow

https://www.quora.com/What-is-the-difference-between-supervised-unsupervised-reinforcement-and-deep-learning

https://www.quora.com/Is-reinforcement-learning-the-combination-of-unsupervised-learning-and-supervised-learning

https://www.quora.com/What-is-the-difference-between-supervised-unsupervised-reinforcement-and-deep-learning

https://www.oreilly.com/ideas/reinforcement-learning-for-complex-goals-using-tensorflow

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0

最前沿:深度学习训练方法大革新,反向传播训练不再唯一

https://zhuanlan.zhihu.com/p/22143664

最前沿:让计算机学会学习Let Computers Learn to Learn

https://zhuanlan.zhihu.com/p/21362413?refer=intelligentunit

深度增强学习之Policy Gradient方法1

https://zhuanlan.zhihu.com/p/21725498

https://deepmind.com/blog/#decoupled-neural-interfaces-using-synthetic-gradients

ore from my Simple Reinforcement Learning with Tensorflow series:

  1. Part 0 — Q-Learning Agents
  2. Part 1 — Two-Armed Bandit
  3. Part 1.5 — Contextual Bandits
  4. Part 2 — Policy-Based Agents
  5. Part 3 — Model-Based RL
  6. Part 4 — Deep Q-Networks and Beyond
  7. Part 5 — Visualizing an Agent’s Thoughts and Actions
  8. Part 6 — Partial Observability and Deep Recurrent Q-Networks
  9. Part 7 — Action-Selection Strategies for Exploration
  10. Part 8 — Asynchronous Actor-Critic Agents (A3C)

https://keon.io/deep-q-learning/

Human-level control through deep reinforcement learning

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

http://rll.berkeley.edu/deeprlcourse/

https://bcourses.berkeley.edu/courses/1453965/pages/cs294-129-designing-visualizing-and-understanding-deep-neural-networks

https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

如何用简单例子讲解 Q - learning 的具体过程?

https://www.zhihu.com/question/26408259

https://deeplearning4j.org/reinforcementlearning.html

https://deeplearning4j.org/neuralnet-overview.html

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/

https://medium.com/beyond-intelligence/reinforcement-learning-or-evolutionary-strategies-nature-has-a-solution-both-8bc80db539b3

https://medium.com/ai-society/my-first-experience-with-deep-reinforcement-learning-1743594f0361

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0

http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

Deep Reinforcement Learning 深度增强学习资源 (持续更新)

https://zhuanlan.zhihu.com/p/20885568

深度解读AlphaGo

https://zhuanlan.zhihu.com/p/20893777

深度学习论文阅读路线图 Deep Learning Papers Reading Roadmap

https://zhuanlan.zhihu.com/p/23080129

ICLR 2017 DRL相关论文

https://zhuanlan.zhihu.com/p/23807875

https://www.intelnervana.com/demystifying-deep-reinforcement-learning/

http://www.jmlr.org/papers/volume6/murphy05a/murphy05a.pdf

https://deepmind.com/research/publications/

https://deepmind.com/blog/alphago-zero-learning-scratch/

Mastering the Game of Go without Human Knowledge

https://www.nature.com/articles/doi:10.1038/nature24270

https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action

DQN 从入门到放弃1 DQN与增强学习

https://zhuanlan.zhihu.com/p/21262246?refer=intelligentunit

DQN 从入门到放弃4 动态规划与Q-Learning

https://zhuanlan.zhihu.com/p/21378532?refer=intelligentunit

DQN从入门到放弃5 深度解读DQN算法

https://zhuanlan.zhihu.com/p/21421729

强化学习系列之九:Deep Q Network (DQN)

http://www.algorithmdog.com/drl

Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

  10. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

随机推荐

  1. sqldeveloper 设置快捷

  2. linux 学习笔记 APACHE安装总结

    #cd /usr/local #mkdir APACHE #tar zxvf /usr/etc/DEV/httpd-2.2.9.tar.gz #mv httpd-2.2.9/* . #rm -rf h ...

  3. Django restful

    1.restful api的规范 API与用户的通信协议,总是使用HTTPs协议. 域名  https://api.example.com                         尽量将API ...

  4. [模板][P3803]多项式乘法

    Description: FFT真的容易忘,所以就放到上面来了 #include<bits/stdc++.h> using namespace std; const int mxn=4e6 ...

  5. Android EditText设置为Number类型后获取数字

    s_video_seg1 = Integer.parseInt(video_seg1.getEditableText().toString().trim()); 此处要使用getEditableTex ...

  6. tableviewcell选中不变色。

    tableview 选中一行后,不显示选中颜色 添加这样一句话就好 cell.selectionStyle = UITableViewCellSelectionStyleNone; 一定不要table ...

  7. python控制流

    1. if...elif...else: 语法: if 判断条件: 语句... elif 判断条件: 语句... else: 语句... #elif语句可以有0个或多个 2. while和for循环: ...

  8. 学习Struts--Chap07:Struts2文件上传和下载

    1.struts2文件上传 1.1.struts2文件上传的基本概述 在开发web应用的时候,我们一般会为用户提供文件上传的功能,比如用户上传一张图像作为头像等.为了能上传文件,我们必须将表单的met ...

  9. python asyncio

    3. 真-官网文档    ----超级全 http://aiohttp.readthedocs.io/en/stable/client.html#make-a-request 2. 官网文档: htt ...

  10. [MySQL]查看用户权限与GRANT用法

    摘自:http://apps.hi.baidu.com/share/detail/15071849 查看用户权限 show grants for 你的用户 比如:show grants for roo ...