Reinforcement-Learning-Introduction-Adaptive-Computation

http://incompleteideas.net/book/bookdraft2017nov5.pdf

http://incompleteideas.net/book/ebook/the-book.html

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262193981

https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf

http://videolectures.net/deeplearning2017_montreal/

http://www.clipconverter.cc/

Reinforcement Learning--David Silver

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

https://www.youtube.com/watch?v=2pWv7GOvuf0

COMBINING POLICY GRADIENT AND Q-LEARNING

https://arxiv.org/pdf/1611.01626.pdf

https://www.quora.com/Whats-the-difference-between-reinforcement-Learning-and-Deep-learning

https://stats.stackexchange.com/questions/144154/supervised-learning-unsupervised-learning-and-reinforcement-learning-workflow

https://www.quora.com/What-is-the-difference-between-supervised-unsupervised-reinforcement-and-deep-learning

https://www.quora.com/Is-reinforcement-learning-the-combination-of-unsupervised-learning-and-supervised-learning

https://www.quora.com/What-is-the-difference-between-supervised-unsupervised-reinforcement-and-deep-learning

https://www.oreilly.com/ideas/reinforcement-learning-for-complex-goals-using-tensorflow

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0

最前沿:深度学习训练方法大革新,反向传播训练不再唯一

https://zhuanlan.zhihu.com/p/22143664

最前沿:让计算机学会学习Let Computers Learn to Learn

https://zhuanlan.zhihu.com/p/21362413?refer=intelligentunit

深度增强学习之Policy Gradient方法1

https://zhuanlan.zhihu.com/p/21725498

https://deepmind.com/blog/#decoupled-neural-interfaces-using-synthetic-gradients

ore from my Simple Reinforcement Learning with Tensorflow series:

  1. Part 0 — Q-Learning Agents
  2. Part 1 — Two-Armed Bandit
  3. Part 1.5 — Contextual Bandits
  4. Part 2 — Policy-Based Agents
  5. Part 3 — Model-Based RL
  6. Part 4 — Deep Q-Networks and Beyond
  7. Part 5 — Visualizing an Agent’s Thoughts and Actions
  8. Part 6 — Partial Observability and Deep Recurrent Q-Networks
  9. Part 7 — Action-Selection Strategies for Exploration
  10. Part 8 — Asynchronous Actor-Critic Agents (A3C)

https://keon.io/deep-q-learning/

Human-level control through deep reinforcement learning

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

http://rll.berkeley.edu/deeprlcourse/

https://bcourses.berkeley.edu/courses/1453965/pages/cs294-129-designing-visualizing-and-understanding-deep-neural-networks

https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

如何用简单例子讲解 Q - learning 的具体过程?

https://www.zhihu.com/question/26408259

https://deeplearning4j.org/reinforcementlearning.html

https://deeplearning4j.org/neuralnet-overview.html

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/

https://medium.com/beyond-intelligence/reinforcement-learning-or-evolutionary-strategies-nature-has-a-solution-both-8bc80db539b3

https://medium.com/ai-society/my-first-experience-with-deep-reinforcement-learning-1743594f0361

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0

http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

Deep Reinforcement Learning 深度增强学习资源 (持续更新)

https://zhuanlan.zhihu.com/p/20885568

深度解读AlphaGo

https://zhuanlan.zhihu.com/p/20893777

深度学习论文阅读路线图 Deep Learning Papers Reading Roadmap

https://zhuanlan.zhihu.com/p/23080129

ICLR 2017 DRL相关论文

https://zhuanlan.zhihu.com/p/23807875

https://www.intelnervana.com/demystifying-deep-reinforcement-learning/

http://www.jmlr.org/papers/volume6/murphy05a/murphy05a.pdf

https://deepmind.com/research/publications/

https://deepmind.com/blog/alphago-zero-learning-scratch/

Mastering the Game of Go without Human Knowledge

https://www.nature.com/articles/doi:10.1038/nature24270

https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action

DQN 从入门到放弃1 DQN与增强学习

https://zhuanlan.zhihu.com/p/21262246?refer=intelligentunit

DQN 从入门到放弃4 动态规划与Q-Learning

https://zhuanlan.zhihu.com/p/21378532?refer=intelligentunit

DQN从入门到放弃5 深度解读DQN算法

https://zhuanlan.zhihu.com/p/21421729

强化学习系列之九:Deep Q Network (DQN)

http://www.algorithmdog.com/drl

Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

  10. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

随机推荐

  1. vsftpd中配置文件详解

    在vsftp服务器中,配置文件/etc/vsftpd/vsftpd.conf文件是配置的核心内容,其具体的配置信息详细情况如下: 1.默认配置: 1>允许匿名用户和本地用户登陆. anonymo ...

  2. Area POJ - 1265 -皮克定理-叉积

    Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...

  3. SpringMVC(二五) JSTL View

    项目中使用JSTL,SpringMVC会把视图由InternalView转换为JstlView. 若使用Jstl的fmt标签,需要在SpringMVC的配置文件中配置国际化资源文件. 实现过程: 1. ...

  4. POJ1700----Crossing River

    #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> us ...

  5. HDU5293 : Tree chain problem

    问题即:选择价值和最多的链,使得每个点最多被一条链覆盖. 那么考虑其对偶问题:选择最少的点(每个点可以重复选),使得每条链上选了至少$w_i$个点. 那么将链按照LCA的深度从大到小排序,每次若发现点 ...

  6. flask内容之数据库的管理

    #! /usr/bin/env python # *-* coding: utf-8 *-* from flask import Flask, flash, redirect from flask i ...

  7. html冲刺

    html知识点回顾与面试题<!--1.<DOCTYPE>告诉浏览器当前文档要以何种HTML或者XHTML规范解析2.语义标签strong 粗体em 斜体del 删除线ins 下划线 ...

  8. JAVA自学笔记27

    JAVA自学笔记27 1.类的加载 1)当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. ①加载:就是指将class文件读入内存,并为之创 ...

  9. Spring mvc前台后台传值

    前台向后台传值: ①同名参数传递:form表单中提交input,Controller方法入参中,直接以同名参数获取 ②不同名参数传递:from表单提交input,Controller方法入参中需要使用 ...

  10. Hibernate(10)_双向n对1(双向1对n)

    1.双向 1-n 与 双向 n-1 是完全相同的两种情形,这里使用双向多对一来演示 双向 1-n 需要在 1 的一端可以访问 n 的一端, 反之依然. 出版社和图书的关系:Publishers--Bo ...