Reinforcement-Learning-Introduction-Adaptive-Computation

http://incompleteideas.net/book/bookdraft2017nov5.pdf

http://incompleteideas.net/book/ebook/the-book.html

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262193981

https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf

http://videolectures.net/deeplearning2017_montreal/

http://www.clipconverter.cc/

Reinforcement Learning--David Silver

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

https://www.youtube.com/watch?v=2pWv7GOvuf0

COMBINING POLICY GRADIENT AND Q-LEARNING

https://arxiv.org/pdf/1611.01626.pdf

https://www.quora.com/Whats-the-difference-between-reinforcement-Learning-and-Deep-learning

https://stats.stackexchange.com/questions/144154/supervised-learning-unsupervised-learning-and-reinforcement-learning-workflow

https://www.quora.com/What-is-the-difference-between-supervised-unsupervised-reinforcement-and-deep-learning

https://www.quora.com/Is-reinforcement-learning-the-combination-of-unsupervised-learning-and-supervised-learning

https://www.quora.com/What-is-the-difference-between-supervised-unsupervised-reinforcement-and-deep-learning

https://www.oreilly.com/ideas/reinforcement-learning-for-complex-goals-using-tensorflow

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0

最前沿:深度学习训练方法大革新,反向传播训练不再唯一

https://zhuanlan.zhihu.com/p/22143664

最前沿:让计算机学会学习Let Computers Learn to Learn

https://zhuanlan.zhihu.com/p/21362413?refer=intelligentunit

深度增强学习之Policy Gradient方法1

https://zhuanlan.zhihu.com/p/21725498

https://deepmind.com/blog/#decoupled-neural-interfaces-using-synthetic-gradients

ore from my Simple Reinforcement Learning with Tensorflow series:

  1. Part 0 — Q-Learning Agents
  2. Part 1 — Two-Armed Bandit
  3. Part 1.5 — Contextual Bandits
  4. Part 2 — Policy-Based Agents
  5. Part 3 — Model-Based RL
  6. Part 4 — Deep Q-Networks and Beyond
  7. Part 5 — Visualizing an Agent’s Thoughts and Actions
  8. Part 6 — Partial Observability and Deep Recurrent Q-Networks
  9. Part 7 — Action-Selection Strategies for Exploration
  10. Part 8 — Asynchronous Actor-Critic Agents (A3C)

https://keon.io/deep-q-learning/

Human-level control through deep reinforcement learning

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

http://rll.berkeley.edu/deeprlcourse/

https://bcourses.berkeley.edu/courses/1453965/pages/cs294-129-designing-visualizing-and-understanding-deep-neural-networks

https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

如何用简单例子讲解 Q - learning 的具体过程?

https://www.zhihu.com/question/26408259

https://deeplearning4j.org/reinforcementlearning.html

https://deeplearning4j.org/neuralnet-overview.html

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/

https://medium.com/beyond-intelligence/reinforcement-learning-or-evolutionary-strategies-nature-has-a-solution-both-8bc80db539b3

https://medium.com/ai-society/my-first-experience-with-deep-reinforcement-learning-1743594f0361

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0

http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

Deep Reinforcement Learning 深度增强学习资源 (持续更新)

https://zhuanlan.zhihu.com/p/20885568

深度解读AlphaGo

https://zhuanlan.zhihu.com/p/20893777

深度学习论文阅读路线图 Deep Learning Papers Reading Roadmap

https://zhuanlan.zhihu.com/p/23080129

ICLR 2017 DRL相关论文

https://zhuanlan.zhihu.com/p/23807875

https://www.intelnervana.com/demystifying-deep-reinforcement-learning/

http://www.jmlr.org/papers/volume6/murphy05a/murphy05a.pdf

https://deepmind.com/research/publications/

https://deepmind.com/blog/alphago-zero-learning-scratch/

Mastering the Game of Go without Human Knowledge

https://www.nature.com/articles/doi:10.1038/nature24270

https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action

DQN 从入门到放弃1 DQN与增强学习

https://zhuanlan.zhihu.com/p/21262246?refer=intelligentunit

DQN 从入门到放弃4 动态规划与Q-Learning

https://zhuanlan.zhihu.com/p/21378532?refer=intelligentunit

DQN从入门到放弃5 深度解读DQN算法

https://zhuanlan.zhihu.com/p/21421729

强化学习系列之九:Deep Q Network (DQN)

http://www.algorithmdog.com/drl

Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

  10. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

随机推荐

  1. 自己总结的C#编码规范--4.注释篇

    注释 注释毫无疑问是让别人以最快速度了解你代码的最快途径,但写注释的目的绝不仅仅是"解释代码做了什么",更重要的尽量帮助代码阅读者对代码了解的和作者一样多. 当你写代码时,你脑海里 ...

  2. Xamarin Essentials教程数据传输DataTransfer

    Xamarin Essentials教程数据传输DataTransfer   通过数据传输功能,应用程序可以将文本或网址发送到其它的应用程序,这样就可以在应用程序之间共享数据,实现常见的分享功能.Xa ...

  3. opencv3 学习笔记(二)

    1.OpenCv 颜色追踪 import cv2import numpy as npcap=cv2.VideoCapture(0)cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1 ...

  4. CODEVS 2455 繁忙的都市 SCOI2005(洛谷 P2330)

    题目描述 Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两 ...

  5. php include 绝对路径 dirname(__FILE__)

     include(dirname(__FILE__)."/PHPMailer/function.php"); 

  6. Windows环境下Composer的安装教程

    1.先下载Composer-Setup.exe,下载地址:下载Composer .会自动搜索php.exe的安装路径,如果没有,就手动找到php路径下的php.exe. 2.在PHP目录下,打开php ...

  7. css selector 用法

    html.css('a::attr(href)').extract()

  8. OpenCV3.2.0+VS2017环境配置与常见问题(巨细坑爹版)

    目录 安装 常见问题 题外话:首先,配环境一定要有耐心... 本博客是本小白第一次装OpenCV成功后第一时间整理发布.用的是刚下载好的OpenCV3.2.0版,用x64编译器Debug运行(当然Re ...

  9. 修改Chrome启动参数解决跨域问题

    这个做法仅仅是针对自己本机,只是一个权宜方案 --disable-web-security --user-data-dir=本地用户信息目录 之后启动Chrome浏览器即可

  10. Java 接口 Closeable

    该接口位于java.io包下,声明如下:public interface Closeable extends AutoCloseable.关闭流并释放与该流关联的所有系统资源.如果已经关闭该流,则调用 ...