Deep Reinforcement Learning
Reinforcement-Learning-Introduction-Adaptive-Computation
http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://incompleteideas.net/book/ebook/the-book.html
https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262193981
https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf
http://videolectures.net/deeplearning2017_montreal/
Reinforcement Learning--David Silver
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
https://www.youtube.com/watch?v=2pWv7GOvuf0
COMBINING POLICY GRADIENT AND Q-LEARNING
https://arxiv.org/pdf/1611.01626.pdf
https://www.quora.com/Whats-the-difference-between-reinforcement-Learning-and-Deep-learning
https://www.oreilly.com/ideas/reinforcement-learning-for-complex-goals-using-tensorflow
最前沿:深度学习训练方法大革新,反向传播训练不再唯一
https://zhuanlan.zhihu.com/p/22143664
最前沿:让计算机学会学习Let Computers Learn to Learn
https://zhuanlan.zhihu.com/p/21362413?refer=intelligentunit
深度增强学习之Policy Gradient方法1
https://zhuanlan.zhihu.com/p/21725498
https://deepmind.com/blog/#decoupled-neural-interfaces-using-synthetic-gradients
ore from my Simple Reinforcement Learning with Tensorflow series:
- Part 0 — Q-Learning Agents
- Part 1 — Two-Armed Bandit
- Part 1.5 — Contextual Bandits
- Part 2 — Policy-Based Agents
- Part 3 — Model-Based RL
- Part 4 — Deep Q-Networks and Beyond
- Part 5 — Visualizing an Agent’s Thoughts and Actions
- Part 6 — Partial Observability and Deep Recurrent Q-Networks
- Part 7 — Action-Selection Strategies for Exploration
- Part 8 — Asynchronous Actor-Critic Agents (A3C)
https://keon.io/deep-q-learning/
Human-level control through deep reinforcement learning
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
http://rll.berkeley.edu/deeprlcourse/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
如何用简单例子讲解 Q - learning 的具体过程?
https://www.zhihu.com/question/26408259
https://deeplearning4j.org/reinforcementlearning.html
https://deeplearning4j.org/neuralnet-overview.html
https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/
https://medium.com/ai-society/my-first-experience-with-deep-reinforcement-learning-1743594f0361
http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
More from my Simple Reinforcement Learning with Tensorflow series:
- Part 0 — Q-Learning Agents
- Part 1 — Two-Armed Bandit
- Part 1.5 — Contextual Bandits
- Part 2 — Policy-Based Agents
- Part 3 — Model-Based RL
- Part 4 — Deep Q-Networks and Beyond
- Part 5 — Visualizing an Agent’s Thoughts and Actions
- Part 6 — Partial Observability and Deep Recurrent Q-Networks
- Part 7 — Action-Selection Strategies for Exploration
- Part 8 — Asynchronous Actor-Critic Agents (A3C)
Deep Reinforcement Learning 深度增强学习资源 (持续更新)
https://zhuanlan.zhihu.com/p/20885568
深度解读AlphaGo
https://zhuanlan.zhihu.com/p/20893777
深度学习论文阅读路线图 Deep Learning Papers Reading Roadmap
https://zhuanlan.zhihu.com/p/23080129
ICLR 2017 DRL相关论文
https://zhuanlan.zhihu.com/p/23807875
https://www.intelnervana.com/demystifying-deep-reinforcement-learning/
http://www.jmlr.org/papers/volume6/murphy05a/murphy05a.pdf
https://deepmind.com/research/publications/
https://deepmind.com/blog/alphago-zero-learning-scratch/
Mastering the Game of Go without Human Knowledge
https://www.nature.com/articles/doi:10.1038/nature24270
https://en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action
DQN 从入门到放弃1 DQN与增强学习
https://zhuanlan.zhihu.com/p/21262246?refer=intelligentunit
DQN 从入门到放弃4 动态规划与Q-Learning
https://zhuanlan.zhihu.com/p/21378532?refer=intelligentunit
DQN从入门到放弃5 深度解读DQN算法
https://zhuanlan.zhihu.com/p/21421729
强化学习系列之九:Deep Q Network (DQN)
http://www.algorithmdog.com/drl
Deep Reinforcement Learning的更多相关文章
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
- (转) Deep Reinforcement Learning: Playing a Racing Game
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...
- 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...
- getting started with building a ROS simulation platform for Deep Reinforcement Learning
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...
- (转) Deep Reinforcement Learning: Pong from Pixels
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- 论文笔记之:Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...
- 论文笔记之:Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...
随机推荐
- vsftpd中配置文件详解
在vsftp服务器中,配置文件/etc/vsftpd/vsftpd.conf文件是配置的核心内容,其具体的配置信息详细情况如下: 1.默认配置: 1>允许匿名用户和本地用户登陆. anonymo ...
- Area POJ - 1265 -皮克定理-叉积
Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...
- SpringMVC(二五) JSTL View
项目中使用JSTL,SpringMVC会把视图由InternalView转换为JstlView. 若使用Jstl的fmt标签,需要在SpringMVC的配置文件中配置国际化资源文件. 实现过程: 1. ...
- POJ1700----Crossing River
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> us ...
- HDU5293 : Tree chain problem
问题即:选择价值和最多的链,使得每个点最多被一条链覆盖. 那么考虑其对偶问题:选择最少的点(每个点可以重复选),使得每条链上选了至少$w_i$个点. 那么将链按照LCA的深度从大到小排序,每次若发现点 ...
- flask内容之数据库的管理
#! /usr/bin/env python # *-* coding: utf-8 *-* from flask import Flask, flash, redirect from flask i ...
- html冲刺
html知识点回顾与面试题<!--1.<DOCTYPE>告诉浏览器当前文档要以何种HTML或者XHTML规范解析2.语义标签strong 粗体em 斜体del 删除线ins 下划线 ...
- JAVA自学笔记27
JAVA自学笔记27 1.类的加载 1)当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. ①加载:就是指将class文件读入内存,并为之创 ...
- Spring mvc前台后台传值
前台向后台传值: ①同名参数传递:form表单中提交input,Controller方法入参中,直接以同名参数获取 ②不同名参数传递:from表单提交input,Controller方法入参中需要使用 ...
- Hibernate(10)_双向n对1(双向1对n)
1.双向 1-n 与 双向 n-1 是完全相同的两种情形,这里使用双向多对一来演示 双向 1-n 需要在 1 的一端可以访问 n 的一端, 反之依然. 出版社和图书的关系:Publishers--Bo ...