应要求写一下这个题的题解。

我的DP很奥(奇)妙(怪),不过跟标算还是殊途同归的(反正怎么做都行……)

先讲一下奥妙的性质吧。

首先,在最终序列中,每个数最多出现一段,并且,对于出现的数,每段数两两之间的相对位置相较原序列保持不变。

然后,你还可以发现,一个数可以延伸到最左的左端点、和最右的右端点,这些都是可以算出来的。

如果我们不考虑操作次数的限制,这个问题就变成了,按顺序给你一堆区间,让你在每个区间里选一小段,使选出来的区间不重叠地覆盖整个序列,并且区间之间的相对位置要按照给定的顺序。

下面考虑次数限制,可以发现,对于一个合法的目标序列(合法的意思就是符合前面的要求,对应到题目就是能够通过操作得到),最优的操作方案显然是按由小到大的顺序对每个数进行操作,并且对每个数之多操作1次。

进一步考虑,发现,对于一个数,我们不需要对它进行操作,当且仅当该数不在最终序列中出现,或者该数在最终序列中出现的位置恰好仅为该数在原序列中的位置。

换句话说,操作k次就是限制了,你的最终序列只能有k段数(如果一个数只在原序列出现的位置出现,那么就不算一段数,需要特判)

之后就是dp,令dp[k][i]表示现在已经有k段数,并且当前计算到原序列左起第i个数的段。

作者太懒了,反正是普及组DP,你们自己脑补好了,那个特判还是要想一想的(对于我这种老年选手)。

(我觉得我已经说得很详细了啊TaT)

(嘛...主要是好困想碎叫QuQ)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define ll long long
#define N 505
#define P 1000000007 using namespace std;
inline int read(){
int ret=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while ('0'<=ch&&ch<='9'){
ret=ret*10-48+ch;
ch=getchar();
}
return ret;
} int kk;
int n,a[N];
int l[N],r[N];
int dp[N][N],dlt[N]; int main(){
n=read();kk=read();
for (int i=1;i<=n;++i) a[i]=read();
memset(dp,0,sizeof(dp));dp[0][0]=1;
for (int i=1;i<=n;++i){
int l,r;
for (l=i;l>1&&a[l-1]<a[i];--l);
for (r=i;r<n&&a[r+1]<a[i];++r);
(dp[kk][i]+=dp[kk][i-1])%=P;
for (int k=kk-1;k>=0;--k){
dlt[l-1]=0;
for (int j=l;j<=r;++j) dlt[j]=(dlt[j-1]+dp[k][j-1])%P;
for (int j=l;j<=r;++j) (dp[k+1][j]+=dlt[j])%=P;
(dp[k][i]+=dp[k][i-1])%=P;
(dp[k+1][i]+=P-dp[k][i-1])%=P;
}
}
int ans=0;
for (int i=0;i<=kk;++i) (ans+=dp[i][n])%=P;
printf("%d\n",ans);
return 0;
}

  

bzoj4621: Tc605的更多相关文章

  1. BZOJ4621 Tc605(动态规划)

    容易发现最终序列所有数字的相对顺序不变,一个数字可能的覆盖范围由两边第一个比它大的数决定,且若不考虑次数限制所有这样的序列都可以变换得到.对于一个序列,其需要的最少变换次数显然就是覆盖了别的位置的数的 ...

  2. 【BZOJ4621】Tc605 DP

    [BZOJ4621]Tc605 Description 最初你有一个长度为 N 的数字序列 A.为了方便起见,序列 A 是一个排列. 你可以操作最多 K 次.每一次操作你可以先选定一个 A 的一个子串 ...

  3. bzoj 4621 Tc605 思想+dp

    4621: Tc605 Time Limit: 15 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 183[Submit][Status][Discuss ...

  4. bzoj 4621: Tc605 动态规划

    题解: 一道比较简单的题目 想着想着就把题目记错了..想成了可以把某段区间覆盖为其中一个数 其实是比较简单的 每个点的贡献一定是一个区间(就跟zjoi2018那题一样) 然后问题就变成了给你n个区间让 ...

  5. BZOJ 4621: Tc605

    Description 最初你有一个长度为 N 的数字序列 A.为了方便起见,序列 A 是一个排列. 你可以操作最多 K 次.每一次操作你可以先选定一个 A 的一个子串,然后将这个子串的数字全部变成原 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. java.net.SocketException: Connection reset

    java.net.SocketException: Connection reset at java.net.SocketInputStream.read(SocketInputStream.java ...

  2. 原型设计Axure的基本使用

    Axure是一款专业的原型设计工具, 让负责定义需求设计:功能和界面的人员能快速设计出所需产品,其中不仅包含了对软件产品的界面,交互逻辑的原型设计,还包含了流程图:web网站的线框图,并且能导出说明文 ...

  3. JQ实现判断iPhone、Android设备

    最近做了一版微信宣传页,通过JQ来判断设备,并进行下载 微信内置浏览器对下载链接进行了屏蔽,所以先进行判断,如果是微信内置浏览器,则跳转应用宝链接,如果不是,则判断是iPhone/Adroid/PC ...

  4. arcgis api for js入门开发系列三地图工具栏(含源代码)

    上一篇实现了demo的地图加载展示,在上篇实现的基础上,新增了地图工具栏以及通用地图控件功能,比如地图框选缩放.地图漫游.清空.量算工具.地图导航控件.地图比例尺控件.地图鹰眼图等等,总共分为5个部分 ...

  5. arcgis api for js入门开发系列二不同地图服务展示(含源代码)

    上一篇介绍了arcgis api离线部署,这篇开始正式介绍arcgis api for js开发:想要学习webgis开发,首先得熟悉了解前端技术,比如界面布局设计的html+css,核心的是java ...

  6. ip命令和ifconfig命令(转载)

    Linux的ip命令和ifconfig类似,但前者功能更强大,并旨在取代后者.使用ip命令,只需一个命令,你就能很轻松地执行一些网络管理任务.ifconfig是net-tools中已被废弃使用的一个命 ...

  7. 通过Wireshark抓包进行Cookie劫持

    首先在目标A机器上运行Wireshark并开启浏览器,开启前关闭其他占用网络的软件,这里我拿51CTO.com做测试. 正常登陆51CTO用户中心,此时使用 http.cookie and http. ...

  8. iOS开发--Swift RAC响应式编程初探

    时间不是很充足, 先少说点, RAC的好处是响应式编程, 不需要自己去设置代理委托, target, 而是主要以信息流(signal), block为主, 看到这里激动吧, 它可以帮你监听你的事件, ...

  9. iOS系列 基础篇 05 视图鼻祖 - UIView

    iOS系列 基础篇 05 视图鼻祖 - UIView 目录: UIView“家族” 应用界面的构建层次 视图分类 最后 在Cocoa和Cocoa Touch框架中,“根”类时NSObject类.同样, ...

  10. linux top命令结果参数详解

    非常详细的top结果说明文档. http://www.cnblogs.com/sbaicl/articles/2752068.html http://bbs.linuxtone.org/forum.p ...