代码都类似,看懂一个,基本都能理解了。

共有代码:

#include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

static const int kItemRepositorySize = 10; // Item buffer size.
static const int kItemsToProduce = 1000;   // How many items we plan to produce.
std::mutex mutex;//多线程标准输出同步锁

单生产者单消费者模式:

 struct ItemRepository
{
int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
size_t read_position; // 消费者读取产品位置.
size_t write_position; // 生产者写入产品位置.
std::mutex mtx; // 互斥量,保护产品缓冲区
std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
} gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量. typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository * ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while (((ir->write_position + ) % kItemRepositorySize)
== ir->read_position)
{ // item buffer is full, just wait here.
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区满,等待缓冲区不满\n";
}
(ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
} (ir->item_buffer)[ir->write_position] = item; // 写入产品.
(ir->write_position)++; // 写入位置后移. if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
ir->write_position = ; (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
lock.unlock(); // 解锁.
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while (ir->write_position == ir->read_position)
{
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区空,等待生产者生成产品\n";
}
(ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
} data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
(ir->read_position)++; // 读取位置后移 if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
ir->read_position = ; (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
lock.unlock(); // 解锁. return data; // 返回产品.
} void ProducerTask() // 生产者任务
{
for (int i = ; i <= kItemsToProduce; ++i)
{
// sleep(1);
ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "生产第 " << i << "个产品" << std::endl;
}
}
} void ConsumerTask() // 消费者任务
{
static int cnt = ;
while ()
{
std::this_thread::sleep_for(std::chrono::seconds());
int item = ConsumeItem(&gItemRepository); // 消费一个产品.
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费第" << item << "个产品" << std::endl;
}
if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
}
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ; // 初始化产品写入位置.
ir->read_position = ; // 初始化产品读取位置.
} void test()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask); // 创建生产者线程.
std::thread consumer(ConsumerTask); // 创建消费之线程. producer.join();
consumer.join();
}

单生产者多消费者模式:

 struct ItemRepository
{
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while (((ir->write_position + ) % kItemRepositorySize)
== ir->read_position)
{
// item buffer is full, just wait here.
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区满,等待缓冲区不满\n";
}
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while (ir->write_position == ir->read_position)
{
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区空,等待生产者生产产品\n";
}
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
for (int i = ; i <= kItemsToProduce; ++i)
{
std::this_thread::sleep_for(std::chrono::milliseconds());
ProduceItem(&gItemRepository, i);
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "生产线程" << std::this_thread::get_id()
<< "生产第" << i << "个产品" << std::endl;
}
}
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "生产线程" << std::this_thread::get_id()
<< "退出" << std::endl;
}
} void ConsumerTask()
{
bool ready_to_exit = false;
while ()
{
// std::this_thread::sleep_for(std::chrono::milliseconds(6));
std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
if (gItemRepository.item_counter < kItemsToProduce)
{
int item = ConsumeItem(&gItemRepository);
++(gItemRepository.item_counter);
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费线程" << std::this_thread::get_id()
<< "正在消费第" << item << "个产品" << std::endl;
}
}
else
{
ready_to_exit = true;
}
lock.unlock(); if (ready_to_exit == true)
{
break;
}
}
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费线程" << std::this_thread::get_id()
<< "退出" << std::endl;
}
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->item_counter = ;
} void test()
{
InitItemRepository(&gItemRepository);
std::thread producer(ProducerTask);
std::thread consumer1(ConsumerTask);
std::thread consumer2(ConsumerTask);
std::thread consumer3(ConsumerTask);
std::thread consumer4(ConsumerTask); producer.join();
consumer1.join();
consumer2.join();
consumer3.join();
consumer4.join();
}

多消费者单生产者模式:

 struct ItemRepository
{
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t item_counter;
std::mutex mtx;
std::mutex item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while (((ir->write_position + ) % kItemRepositorySize)
== ir->read_position)
{
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区满,等待缓冲区不满\n";
}
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while (ir->write_position == ir->read_position)
{
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者等待产品中。。。\n";
}
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
bool ready_to_exit = false;
while ()
{
std::this_thread::sleep_for(std::chrono::milliseconds());
std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
if (gItemRepository.item_counter < kItemsToProduce)
{
++(gItemRepository.item_counter);
ProduceItem(&gItemRepository, gItemRepository.item_counter);
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者" << std::this_thread::get_id()
<< "正在生产第" << gItemRepository.item_counter
<< "个产品" << std::endl;
}
}
else
{
ready_to_exit = true;
}
lock.unlock();
if (ready_to_exit == true) break;
}
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者" << std::this_thread::get_id()
<< "退出" << std::endl;
}
} void ConsumerTask()
{
static int item_consumed = ;
while ()
{
std::this_thread::sleep_for(std::chrono::milliseconds());
++item_consumed;
if (item_consumed <= kItemsToProduce)
{
int item = ConsumeItem(&gItemRepository);
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者" << std::this_thread::get_id()
<< "正在消费第" << item << "个产品" << std::endl;
}
}
else break;
}
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者" << std::this_thread::get_id()
<< "退出" << std::endl;
}
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->item_counter = ;
} void test()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask);
std::thread consumer(ConsumerTask); producer1.join();
producer2.join();
producer3.join();
producer4.join();
consumer.join();
}

多消费者多生产者模式:

 struct ItemRepository
{
int item_buffer[kItemRepositorySize];
size_t read_position;
size_t write_position;
size_t produced_item_counter;
size_t consumed_item_counter;
std::mutex mtx;
std::mutex produced_item_counter_mtx;
std::mutex consumed_item_counter_mtx;
std::condition_variable repo_not_full;
std::condition_variable repo_not_empty;
} gItemRepository; typedef struct ItemRepository ItemRepository; void ProduceItem(ItemRepository *ir, int item)
{
std::unique_lock<std::mutex> lock(ir->mtx);
while (((ir->write_position + ) % kItemRepositorySize)
== ir->read_position)
{
// item buffer is full, just wait here.
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区满,生产者等待中\n";
}
(ir->repo_not_full).wait(lock);
} (ir->item_buffer)[ir->write_position] = item;
(ir->write_position)++; if (ir->write_position == kItemRepositorySize)
ir->write_position = ; (ir->repo_not_empty).notify_all();
lock.unlock();
} int ConsumeItem(ItemRepository *ir)
{
int data;
std::unique_lock<std::mutex> lock(ir->mtx);
// item buffer is empty, just wait here.
while (ir->write_position == ir->read_position)
{
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "缓冲区空,消费者等待中\n";
}
(ir->repo_not_empty).wait(lock);
} data = (ir->item_buffer)[ir->read_position];
(ir->read_position)++; if (ir->read_position >= kItemRepositorySize)
ir->read_position = ; (ir->repo_not_full).notify_all();
lock.unlock(); return data;
} void ProducerTask()
{
bool ready_to_exit = false;
while ()
{
std::this_thread::sleep_for(std::chrono::milliseconds());
std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);
if (gItemRepository.produced_item_counter < kItemsToProduce)
{
++(gItemRepository.produced_item_counter);
ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "生产者" << std::this_thread::get_id()
<< "正在生产第" << gItemRepository.produced_item_counter
<< "个产品" << std::endl;
}
}
else
{
ready_to_exit = true;
} lock.unlock();
if (ready_to_exit == true)
{
break;
}
}
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "生产者" << std::this_thread::get_id()
<< "退出" << std::endl;
}
} void ConsumerTask()
{
bool ready_to_exit = false;
while ()
{
std::this_thread::sleep_for(std::chrono::milliseconds());
std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);
if (gItemRepository.consumed_item_counter < kItemsToProduce)
{
int item = ConsumeItem(&gItemRepository);
++(gItemRepository.consumed_item_counter);
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者" << std::this_thread::get_id()
<< "正在消费第" << item << "个产品" << std::endl;
}
}
else
{
ready_to_exit = true;
}
lock.unlock();
if (ready_to_exit == true)
{
break;
}
}
{
std::lock_guard<std::mutex> lock(mutex);
std::cout << "消费者" << std::this_thread::get_id()
<< "退出" << std::endl;
}
} void InitItemRepository(ItemRepository *ir)
{
ir->write_position = ;
ir->read_position = ;
ir->produced_item_counter = ;
ir->consumed_item_counter = ;
} void test()
{
InitItemRepository(&gItemRepository);
std::thread producer1(ProducerTask);
std::thread producer2(ProducerTask);
std::thread producer3(ProducerTask);
std::thread producer4(ProducerTask); std::thread consumer1(ConsumerTask);
std::thread consumer2(ConsumerTask);
std::thread consumer3(ConsumerTask);
std::thread consumer4(ConsumerTask); producer1.join();
producer2.join();
producer3.join();
producer4.join(); consumer1.join();
consumer2.join();
consumer3.join();
consumer4.join();
}

注:

1、当缓存容量为n时,其实只能存放n-1个产品,主要原因是,当缓存满和空时,用取余无法区分

2、当单单模式变成多多模式时,只是针对单变多的某一方多添加一个读写锁

3、向标准缓冲区输出字符串时,由于是多线程的,所以需要使用读写锁来同步

完整实例下载:http://files.cnblogs.com/files/swarmbees/Producer_Consumer.zip

如果您觉得文章不错,不妨给个打赏,写作不易,感谢各位的支持。您的支持是我最大的动力,谢谢!!! 

 

很重要--转载声明

  1. 本站文章无特别说明,皆为原创,版权所有,转载时请用链接的方式,给出原文出处。同时写上原作者:朝十晚八 or Twowords
  2. 如要转载,请原文转载,如在转载时修改本文,请事先告知,谢绝在转载时通过修改本文达到有利于转载者的目的。

C++11 实现生产者消费者模式的更多相关文章

  1. python 并发编程 锁 / 信号量 / 事件 / 队列(进程间通信(IPC)) /生产者消费者模式

    (1)锁:进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理. 虽然使用加锁的形式实现了 ...

  2. 基于Java 生产者消费者模式(详细分析)

    Java 生产者消费者模式详细分析 本文目录:1.等待.唤醒机制的原理2.Lock和Condition3.单生产者单消费者模式4.使用Lock和Condition实现单生产单消费模式5.多生产多消费模 ...

  3. 2.5多线程(Java学习笔记)生产者消费者模式

    一.什么是生产者消费者模式 生产者生产数据存放在缓冲区,消费者从缓冲区拿出数据处理. 可能大家会问这样有何好处? 1.解耦 由于有了缓冲区,生产者和消费者之间不直接依赖,耦合度降低,便于程序拓展和维护 ...

  4. wait、notify应用场景(生产者-消费者模式)

    Java实现生产者消费者的方式有:wait && notify.BlockingQueue.Lock && Condition等 wait.notify注意事项:(1) ...

  5. 第三节: List类型的介绍、生产者消费者模式、发布订阅模式

    一. List类型基础 1.介绍 它是一个双向链表,支持左进.左出.右进.右出,所以它即可以充当队列使用,也可以充当栈使用. (1). 队列:先进先出, 可以利用List左进右出,或者右进左出(Lis ...

  6. java多线程 生产者消费者模式

    package de.bvb; /** * 生产者消费者模式 * 通过 wait() 和 notify() 通信方法实现 * */ public class Test1 { public static ...

  7. LabVIEW之生产者/消费者模式--队列操作 彭会锋

    LabVIEW之生产者/消费者模式--队列操作 彭会锋 本文章主要是对学习LabVIEW之生产者/消费者模式的学习笔记,其中涉及到同步控制技术-队列.事件.状态机.生产者-消费者模式,这几种技术在在本 ...

  8. 转:Task任务调度实现生产者消费者模式 (个人理解后文)

    纯属个人愚见.欢迎加入反驳(PiDou). 1.前文大致就是,利用Queue配置的一个TaskFactory任务调度器.实现生产者消费者模式的例子..首先我就试了 第一种 FIFO(先进先出)的配置. ...

  9. Lucene.net站内搜索—4、搜索引擎第一版技术储备(简单介绍Log4Net、生产者消费者模式)

    目录 Lucene.net站内搜索—1.SEO优化 Lucene.net站内搜索—2.Lucene.Net简介和分词Lucene.net站内搜索—3.最简单搜索引擎代码Lucene.net站内搜索—4 ...

随机推荐

  1. 执行Hive出现Error running child : java.lang.OutOfMemoryError: Java heap space错误

    具体错误日志如下: 2018-05-11 15:16:49,429 FATAL [main] org.apache.hadoop.mapred.YarnChild: Error running chi ...

  2. King 差分约束 判负环

    给出n个不等式 给出四个参数第一个数i可以代表序列的第几项,然后给出n,这样前面两个数就可以描述为ai+a(i+1)+...a(i+n),即从i到n的连续和,再给出一个符号和一个ki当符号为gt代表‘ ...

  3. Kali Linux & Metasploit Framework

    systemctl enable postgresql.service systemctl start postgresql.service # systemctl status postgresql ...

  4. BUAA面向对象设计与构造——第二单元总结

    BUAA面向对象设计与构造——第二单元总结 第一阶段:单部傻瓜电梯的调度 第二阶段:单部可捎带电梯的调度 (由于我第一次写的作业就是可捎带模式,第二次只是增加了负数楼层,修改了一部分参数,因此一起总结 ...

  5. php字符串与数组的特殊情况

    来看一个有趣的实验 实验1 <?php $arr = array('a','b','c'); var_dump(isset($arr[1][0])); var_dump($arr[0][0]); ...

  6. 爬虫之urllib库

    一.urllib库简介 简介 Urllib是Python内置的HTTP请求库.其主要作用就是可以通过代码模拟浏览器发送请求.它包含四个模块: urllib.request :请求模块 urllib.e ...

  7. Python3 文件

    f=open('C:\\Users\\fengx\\Desktop\\sharing\\test.txt') 如果打开文件的格式不匹配,可能会报如下错: >>> open('C:\U ...

  8. JavaScript遍历对象4种方法和遍历数组的3种方式 代码

    //遍历对象 4种方法 //Object.keys(obj).forEach() console.log("keys...遍历</br>") var obj1 = { ...

  9. mysql的复习

    . 着重号,区分字段和关键字的符号 +号是运算的 起别名,其中的as可以省略 ifnull(expr1,expr2),expr1代表输入的字段,expr2代表如果输入的字段是null则为expr2 条 ...

  10. [转载]SSH框架搭建详细图文教程

    http://www.cnblogs.com/hoobey/p/5512924.html