#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int maxx = +;
vector<int>G[maxx];
int d[maxx];//保存的是当前节点的儿子节点数目
int vis[maxx];
int sum,num,n;
void dfs(int x)
{
vis[x]=;
int num_son=;
for (int i=; i<G[x].size(); i++)
{
int now=G[x][i];//当前访问的节点
if(!vis[now]) //如果没有访问
{
dfs(now);//DFS
d[x]+=(d[now]+);//D[now]保存的是now的儿子节点个数,+1就是当前节点的儿子节点个数
num_son=max(d[now]+,num_son);//取大的
}
}
num_son=max(num_son,n-d[x]-);
if (num_son<sum || (num_son==sum && x<num))//维护
{
sum=num_son;
num=x;
}
return ;
}
int main()
{
int t,u,v;
scanf("%d",&t);
while(t--)
{
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
for (int i=; i<=n; i++)
{
G[i].clear();
}
memset(vis,,sizeof(vis));
scanf("%d",&n);
sum=n;
num=;
for (int i=; i<n; i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs();
printf("%d %d\n",num,sum);
}
return ;
}

DP求树的重心的更多相关文章

  1. 树形DP求树的重心 --SGU 134

    令一个点的属性值为:去除这个点以及与这个点相连的所有边后得到的连通分量的节点数的最大值. 则树的重心定义为:一个点,这个点的属性值在所有点中是最小的. SGU 134 即要找出所有的重心,并且找出重心 ...

  2. POJ 1655 Balancing Act (树形DP求树的重心)

    题意: 求一棵树中以某个点为重心最小的子树集, 就是去掉这个点, 图中节点最多的联通块节点最少. 分析: 想知道这个点是不是最优的点, 只要比较它子树的数量和除去这部分其他的数量(它的父节点那部分树) ...

  3. 树形dp求树的重心

    Balancing Act http://poj.org/problem?id=1655 #include<cstdio> #include<cstring> #include ...

  4. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  5. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  6. poj3107 求树的重心(&& poj1655 同样求树的重心)

    题目链接:http://poj.org/problem?id=3107 求树的重心,所谓树的重心就是:在无根树转换为有根树的过程中,去掉根节点之后,剩下的树的最大结点最小,该点即为重心. 剩下的数的 ...

  7. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  8. POJ 1655 求树的重心

    POJ 1655 [题目链接]POJ 1655 [题目类型]求树的重心 &题意: 定义平衡数为去掉一个点其最大子树的结点个数,求给定树的最小平衡数和对应要删的点.其实就是求树的重心,找到一个点 ...

  9. 求树的重心(POJ1655)

    题意:给出一颗n(n<=2000)个结点的树,删除其中的一个结点,会形成一棵树,或者多棵树,定义删除任意一个结点的平衡度为最大的那棵树的结点个数,问删除哪个结点后,可以让平衡度最小,即求树的重心 ...

随机推荐

  1. CAN总线学习记录之四:位定时与同步

    一.位定时 1.1 比特率和波特率 1)位速率:又叫做比特率(bit rata).信息传输率,表示的是单位时间内,总线上传输的信息量,即每秒能够传输的二进制位的数量,单位是bit per second ...

  2. Springboot 系列(一)Spring Boot 入门篇

    注意:本 Spring Boot 系列文章基于 Spring Boot 版本 v2.1.1.RELEASE 进行学习分析,版本不同可能会有细微差别. 前言 由于 J2EE 的开发变得笨重,繁多的配置, ...

  3. 讲讲跳跃表(Skip Lists)

    跳跃表(Skip Lists)是一种有序的数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的.在大部分情况下,跳跃表的效率可以和平衡树相媲美,并且在实现上比平衡树要更为 ...

  4. linux学习笔记-配置vbox虚拟机本地连接和外网同时可用

    我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 在设置网络里面启用两个网卡,一个桥接,一个网络地址转换 archlinux系统下第一个网络地址转换,第二个桥接 centos7系 ...

  5. Dynamics 365-RetrieveDependenciesForDeleteRequest

    不少人在使用Dynamics 365的时候,或多或少都会遇到Delete a Component的情况,比如Unregister a Plugin/Workflow. 想象这么一个常见的情形:你定制了 ...

  6. 在AndroidStudio上使用AddressSanitizer

    在AndroidStudio上使用AddressSanitizer AddressSanitizer是Google主导的一个开源内存问题检测工具.现在也开始支持Android平台,且受Google推荐 ...

  7. Android application使用总结

    简介: Application和Activity.Service一样,都是Android框架的一个系统组件,每一个应用都有一个Application,Application的生命周期也就是整个app的 ...

  8. 使用GRPC远程服务调用

    远程过程调用(英语:Remote Procedure Call,缩写为 RPC)是一个计算机通信协议.该协议允许运行于一台计算机的程序调用另一台计算机的子程序,而程序员无需额外地为这个交互作用编程.如 ...

  9. Java实现栈数据结构

    栈(英语:stack)又称为栈或堆叠,是计算机科学中一种特殊的串列形式的抽象数据类型,其特殊之处在于只能允许在链表或数组的一端(称为堆栈顶端指针,英语:top)进行加入数据(英语:push)和输出数据 ...

  10. WPF开源项目

    WPF有很多优秀的开源项目,我以为大家都知道,结果,问了很多人,其实他们不知道.唉,太可惜了! 先介绍两个比较牛逼的界面库 1.MaterialDesignInXamlToolkit Android风 ...