DP求树的重心
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int maxx = +;
vector<int>G[maxx];
int d[maxx];//保存的是当前节点的儿子节点数目
int vis[maxx];
int sum,num,n;
void dfs(int x)
{
vis[x]=;
int num_son=;
for (int i=; i<G[x].size(); i++)
{
int now=G[x][i];//当前访问的节点
if(!vis[now]) //如果没有访问
{
dfs(now);//DFS
d[x]+=(d[now]+);//D[now]保存的是now的儿子节点个数,+1就是当前节点的儿子节点个数
num_son=max(d[now]+,num_son);//取大的
}
}
num_son=max(num_son,n-d[x]-);
if (num_son<sum || (num_son==sum && x<num))//维护
{
sum=num_son;
num=x;
}
return ;
}
int main()
{
int t,u,v;
scanf("%d",&t);
while(t--)
{
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
for (int i=; i<=n; i++)
{
G[i].clear();
}
memset(vis,,sizeof(vis));
scanf("%d",&n);
sum=n;
num=;
for (int i=; i<n; i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs();
printf("%d %d\n",num,sum);
}
return ;
}
DP求树的重心的更多相关文章
- 树形DP求树的重心 --SGU 134
令一个点的属性值为:去除这个点以及与这个点相连的所有边后得到的连通分量的节点数的最大值. 则树的重心定义为:一个点,这个点的属性值在所有点中是最小的. SGU 134 即要找出所有的重心,并且找出重心 ...
- POJ 1655 Balancing Act (树形DP求树的重心)
题意: 求一棵树中以某个点为重心最小的子树集, 就是去掉这个点, 图中节点最多的联通块节点最少. 分析: 想知道这个点是不是最优的点, 只要比较它子树的数量和除去这部分其他的数量(它的父节点那部分树) ...
- 树形dp求树的重心
Balancing Act http://poj.org/problem?id=1655 #include<cstdio> #include<cstring> #include ...
- POJ 1655 Balancing Act(求树的重心--树形DP)
题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...
- poj 1655 Balancing Act 求树的重心【树形dp】
poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...
- poj3107 求树的重心(&& poj1655 同样求树的重心)
题目链接:http://poj.org/problem?id=3107 求树的重心,所谓树的重心就是:在无根树转换为有根树的过程中,去掉根节点之后,剩下的树的最大结点最小,该点即为重心. 剩下的数的 ...
- POJ 1655 Balancing Act (求树的重心)
求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...
- POJ 1655 求树的重心
POJ 1655 [题目链接]POJ 1655 [题目类型]求树的重心 &题意: 定义平衡数为去掉一个点其最大子树的结点个数,求给定树的最小平衡数和对应要删的点.其实就是求树的重心,找到一个点 ...
- 求树的重心(POJ1655)
题意:给出一颗n(n<=2000)个结点的树,删除其中的一个结点,会形成一棵树,或者多棵树,定义删除任意一个结点的平衡度为最大的那棵树的结点个数,问删除哪个结点后,可以让平衡度最小,即求树的重心 ...
随机推荐
- javascript基础修炼(4)——UMD规范的代码推演
javascript基础修炼(4)--UMD规范的代码推演 1. UMD规范 地址:https://github.com/umdjs/umd UMD规范,就是所有规范里长得最丑的那个,没有之一!!!它 ...
- 【Angular专题】——(1)Angular,孤傲的变革者
目录 一. 漫谈Angular 二. 如果你还在使用Angularjs 三. 我计划这样学习Angular技术栈 一. 漫谈Angular Angular,来自Google的前端SPA框架,与Reac ...
- VS2017移动开发(C#、VB.NET)——Numeric控件的使用方式
Visual Studio 2017移动开发 控件介绍和使用方式:Numeric控件 Smobiler开发平台,.NET移动开发 一. 样式一 我们要实现上图中的效果,需要如下的操作 ...
- C#/VB.NET 操作Word批注(二)——如何插入图片、读取、回复Word批注内容
序 在前面的文章C# 如何插入.修改.删除Word批注一文中介绍了如何操作Word批注的一些方法,在本篇文章中继续介绍操作Word批注的方法.分以下三种情况来介绍: 1. 插入图片到Word批注 2. ...
- Android开发——绘图基础
前言: Android中绘图基本三个类,分别是Paint(画笔),Path(路径),Canvas(画布),这三个也是自定义View经常会使用到的类 个人理解,Canvas画布这个翻译其实不太好,这个类 ...
- jquery 实现省市二级联动,附带完整的省市json数据 (粘贴即用)
1.可以单独定义一个js,保存省市json数据. citydata = { "安徽": [ "合肥", "芜湖", "蚌埠&quo ...
- Java中的会话Cookie&&Session
会话技术 会话: 一次会话中包含多次请求和响应. 一次会话:浏览器第一次给服务器资源发送请,会话建立,直到有一方断开为止 功能:在一次会话的范围内的多次请求之间共享数据 方式: 客户端会话技术:coo ...
- offic|集成|协同OA|移动办公|
随着互联网时代的日新月异,移动通讯技术的飞速发展,移动网络技术的更新换代,手机.平板电脑等移动设备越来越智能化.越来越多样化,人们对移动办公的需求也在日益增长.在此背景下北京博信施科技有限公司自主研发 ...
- WebView断网提示
转载请标明出处,维权必究:https://www.cnblogs.com/tangZH/p/9913968.html 重写WebViewClient中的方法,然后WebView.setWebViewC ...
- Android远程桌面助手之系统兼容篇
Android远程桌面助手理论上兼容Android4.4至Android8.1之间所有的原生安卓系统,其他第三方ROM,如MIUI.Flyme.EMUI和Smartisan OS等也都陆续测试过,目前 ...