实时同步到Hbase的优化-1

最近没有管测试环境的,上去看了下,好家伙,kafka羁留了上百万数据,于是打算把数据同步到测试的Hbase库中,在这期间发现了插入性能问题
def putMapData(tableName: String , columnFamily:String, key:String , mapData:Map[String , String]) = {
val startTime = System.currentTimeMillis()
val table: Table = Init(tableName , columnFamily)
val endTime = System.currentTimeMillis()
Logger.getLogger("处理事务").info(s"插入的时间:${(endTime - startTime)}")
try{
//TODO rowKeyWithMD5Prefix
val rowkey = HbaseTools.rowKeyByMD5(key)
val put: Put = new Put(rowkey)
if(mapData.size > 0){
for((k , v) <- mapData){
put.addColumn(Bytes.toBytes(columnFamily) ,Bytes.toBytes(k.toString) , Bytes.toBytes(v.toString))
}
}
table.put(put)
}catch{
case e:Exception => e.printStackTrace()
}finally {
table.close()
}
}
/**
* @return 构建表的连接
* */
def Init(tableName: String , columnFamily:String):Table = {
val hTableDescriptor = new HTableDescriptor(TableName.valueOf(tableName))
val hColumnDescriptor = new HColumnDescriptor(columnFamily)
hTableDescriptor.addFamily(hColumnDescriptor)
if(!admin.tableExists(TableName.valueOf(tableName))){
// admin.createTable(hTableDescriptor)
createHTable(conn , tableName , , Array(columnFamily)) }
conn.getTable(TableName.valueOf(tableName))
}
发现一条数据过来,会进行一次init,就是判断这个表是不是存在的,如果不存在那么创建表,但是这个过程要50~70ms时间,海量数据下来,处理是非常慢的
也就是说:这块儿代码及其耗费时间
val hTableDescriptor = new HTableDescriptor(TableName.valueOf(tableName))
val hColumnDescriptor = new HColumnDescriptor(columnFamily)
hTableDescriptor.addFamily(hColumnDescriptor)
if(!admin.tableExists(TableName.valueOf(tableName))){
createHTable(conn , tableName , , Array(columnFamily)) }
所以,尽量在实时处理时候,不要走这些从程序;
因此,将上面的代码提升带object的成员变量处:
private val config: Configuration = HBaseConfiguration.create()
config.set("hbase.zookeeper.quorum" , GlobalConfigUtils.hbaseQuorem)
config.set("hbase.master" , GlobalConfigUtils.hbaseMaster)
config.set("hbase.zookeeper.property.clientPort" , GlobalConfigUtils.clientPort)
config.set("hbase.rpc.timeout" , GlobalConfigUtils.rpcTimeout)
config.set("hbase.client.operator.timeout" , GlobalConfigUtils.operatorTimeout)
config.set("hbase.client.scanner.timeout.period" , GlobalConfigUtils.scannTimeout)
private val conn: Connection = ConnectionFactory.createConnection(config)
private val admin: Admin = conn.getAdmin
val atomic = new AtomicInteger(0)
var resultAtomic = 0
val hTableDescriptor = new HTableDescriptor(TableName.valueOf(GlobalConfigUtils.tableOrderInfo))
val hColumnDescriptor = new HColumnDescriptor(GlobalConfigUtils.tableColumnFamily)
hTableDescriptor.addFamily(hColumnDescriptor)
if(!admin.tableExists(TableName.valueOf(GlobalConfigUtils.tableOrderInfo))){
createHTable(conn , GlobalConfigUtils.tableOrderInfo , 10 , Array(GlobalConfigUtils.tableColumnFamily))
}private val config: Configuration = HBaseConfiguration.create()
config.set("hbase.zookeeper.quorum" , GlobalConfigUtils.hbaseQuorem)
config.set("hbase.master" , GlobalConfigUtils.hbaseMaster)
config.set("hbase.zookeeper.property.clientPort" , GlobalConfigUtils.clientPort)
config.set("hbase.rpc.timeout" , GlobalConfigUtils.rpcTimeout)
config.set("hbase.client.operator.timeout" , GlobalConfigUtils.operatorTimeout)
config.set("hbase.client.scanner.timeout.period" , GlobalConfigUtils.scannTimeout)
private val conn: Connection = ConnectionFactory.createConnection(config)
private val admin: Admin = conn.getAdmin
val atomic = new AtomicInteger(0)
var resultAtomic = 0
val hTableDescriptor = new HTableDescriptor(TableName.valueOf(GlobalConfigUtils.tableOrderInfo))
val hColumnDescriptor = new HColumnDescriptor(GlobalConfigUtils.tableColumnFamily)
hTableDescriptor.addFamily(hColumnDescriptor)
if(!admin.tableExists(TableName.valueOf(GlobalConfigUtils.tableOrderInfo))){
createHTable(conn , GlobalConfigUtils.tableOrderInfo , 10 , Array(GlobalConfigUtils.tableColumnFamily))
}
然后我在提交代码。发现:
以前的2000条数据插入时间大概需要140000ms的时间
现在处理的时间:

速度提升了大概140000 /10 倍
实时同步到Hbase的优化-1的更多相关文章
- Mysql 到 Hbase 数据如何实时同步,强大的 Streamsets 告诉你
很多情况大数据集群需要获取业务数据,用于分析.通常有两种方式: 业务直接或间接写入的方式 业务的关系型数据库同步到大数据集群的方式 第一种可以是在业务中编写代码,将觉得需要发送的数据发送到消息队列,最 ...
- Mysql数据实时同步
企业运维的数据库最常见的是 mysql;但是 mysql 有个缺陷:当数据量达到千万条的时候,mysql 的相关操作会变的非常迟缓; 如果这个时候有需求需要实时展示数据;对于 mysql 来说是一种灾 ...
- HBase性能优化方法总结(转)
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pr ...
- HBase性能优化方法总结(转)
原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. ...
- Hbase性能优化
HBase性能优化方法总结 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户 ...
- 基于Canal和Kafka实现MySQL的Binlog近实时同步
前提 近段时间,业务系统架构基本完备,数据层面的建设比较薄弱,因为笔者目前工作重心在于搭建一个小型的数据平台.优先级比较高的一个任务就是需要近实时同步业务系统的数据(包括保存.更新或者软删除)到一个另 ...
- hbase读写优化
一.hbase读优化 客户端优化 1.scan缓存是否设置合理? 优化原理:一次scan请求,实际并不会一次就将所有数据加载到本地,而是多次RPC请求进行加载.默认100条数据大小. 优化建议:大sc ...
- inotify+rsync实现实时同步部署
1.1.架构规划 1.1.1架构规划准备 服务器系统 角色 IP Centos6.7 x86_64 NFS服务器端(NFS-server-inotify-tools) 192.168.1.14 Cen ...
- lsyncd 实时同步
1. 几大实时同步工具比较 1.1 inotify + rsync 最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是inotify + rsync,但随着文件数量的增大到100W+,目录下的 ...
随机推荐
- iOS程序员 如何做到升职加薪,5年 开发经验 码农 笔记送给你!
前言: 对于我们绝大多数人来说,工作最基本的意义是我们可以通过自己的劳动换取酬劳来养活自己,尤其是对于刚毕业的学生,拥有一份全日制的工作意味着自己走出校园,踏上社会,自己真正开始独立起来. 在养活自己 ...
- 支持向量机SVM原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)
项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?cours ...
- Ansible-基础
Ansible架构 Inventory 主机清单,可以对主机分组 ansible-hoc ansible的命令,适用临时场景 ansible-playbook ansible是一个场景的集 ...
- (Python3) 九九乘法表 代码
for i in range(1,10): for j in range(1,10): print(i '*' j '=', i*j)
- RLException: XXX is neither a launch file in package XXX nor is XXX a launch file name问题解决
在运行roslaunch时出现了类似下面的错误: RLException: XXX is neither a launch file in package XXX nor is XXX a launc ...
- java界面--WePush-master 项目跑起来 -碰到的问题
仅能在IntelliJ里面打开GUI Form文件来进行界面的拖拽设计--eclipse中也可以了 当eclipse 打开.form文件时,提示有.对应的编辑工具可以打开它,请到市场去安装 但是:本人 ...
- [转] C/C++ 调用Python
from : https://cyendra.github.io/2018/07/10/pythoncpp/ 目录 前言 官方文档 环境搭建 编译链接 Demo 解释器 初始化 GIL Object ...
- Java 多线程 - Synchronized关键字
目录 1-Synchronized 关键字概述 2- Synchronized关键字作用域 3- Synchronized 原理(反编译指令解释) 正文 1-Synchronized 关键字概述 由于 ...
- JSR-303 数据校验学习
一.JSR-303简介JSR-303 是 JAVA EE 6 中的一项子规范,叫做 Bean Validation,官方参考实现是Hibernate Validator. 此实现与 Hibernate ...
- TCP-IP详解笔记8
TCP-IP详解笔记8 TCP超时与重传 下层网络层(IP)可能出现丢失, 重复或丢失包的情况, TCP协议提供了可靠的数据传输服务. TCP启动重传操作, 重传尚未确定的数据. 基于时间重传. 基于 ...