http://poj.org/problem?id=2409 (题目链接)

题意

  一个n个珠子的项链,每个珠子可以被染成t种颜色。项链可以翻转和旋转,问不同的染色方案数。

Solution

  Pólya定理。

  旋转:如果逆时针旋转i颗珠子的间距,则珠子0,i,2i,······构成一个循环。这个循环有n/gcd(n,i)个元素。根据对称性,所有循环的长度相同,因此一共有gcd(n,i)个循环。这些置换的不动点总数为${\sum_{i=0}^{n-1}  t^{gcd(i,n)}}$种,其中t为颜色数。

  翻转:需要分两种情况讨论。当n为奇数时,对称轴有n条,每条对称轴形成${\frac{n-1}{2}}$个长度为2的循环和1个长度为1的循环,即一共${\frac{n+1}{2}}$个循环。这些置换的不动点总数为${b = n t^{ \frac{n+1}{2} }}$。当n为偶数时,有两种对称轴。穿过柱子的对称轴有${\frac{n}{2}}$条,各形成${\frac{n}{2}-1}$个长度为2的循环和两个长度为1的循环;不穿过珠子的对称轴有${\frac{n}{2}}$条,各形成${\frac{n}{2}}$个长度为2的循环。这些置换的不动点总数为${b=\frac{n}{2} (t^{\frac{n}{2}+1}+t^{\frac{n}{2}})}$。

代码

// poj2409
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; LL gcd(LL a,LL b) {
return b==0 ? a : gcd(b,a%b);
}
LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) res*=a;
b>>=1;a*=a;
}
return res;
}
int main() {
LL n,t;
while (scanf("%lld%lld",&t,&n)!=EOF && n && t) {
LL a=0,b=0;
for (int i=0;i<n;i++) a+=power(t,gcd(n,i));
if (n&1) b=n*power(t,(n+1)/2);
else b=n/2*(power(t,n/2+1)+power(t,n/2));
printf("%lld\n",(a+b)/2/n);
}
return 0;
}

【poj2409】 Let it Bead的更多相关文章

  1. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  2. 【poj2409】Let it Bead Polya定理

    题目描述 用 $c$ 种颜色去染 $r$ 个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $r·c\le 32$ . 题解 Polya定理 Burnside引理 ...

  3. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  4. 【caffe-windows】 caffe-master 之Matlab中model的分类应用

    此篇讲述在matlab中,如何将训练好的model用于图像分类.将以mnist为例,主要用到caffe-master\matlab\demo 下的classification_demo.m ,可参考我 ...

  5. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  6. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  7. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  8. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  9. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

随机推荐

  1. 这个图片切换动画只用CSS3实现

    体验效果:http://hovertree.com/texiao/css3/39/ 这是一个使用纯CSS3实现的图文切换效果,没使用js脚本.点击左右箭头或者索圆点引按钮可以切换内容. 本特效中使用到 ...

  2. jQuery+css3侧边栏导航菜单

    效果体验:http://hovertree.com/texiao/jquery/37/ 代码如下: <!doctype html> <html lang="zh" ...

  3. htm常用标签总结

    1.结构性定义 文件类型 <HTML></HTML> (放在档案的开头与结尾) 文件主题 <TITLE></TITLE> (必须放在「文头」区块内) 文 ...

  4. Atitit 在线支付系统功能设计原理与解决方案 与目录

    Atitit 在线支付系统功能设计原理与解决方案 与目录 1.1. 支付系统1 1.2. 独立的支付子体系..微服务架构..1 1.3. 参考书籍1 支付战争 [The PayPal Wars:Bat ...

  5. Atitit ftp原理与解决方案

    Atitit ftp原理与解决方案 Deodeo sh shmayama ..search ftp.. 1. http和ftp都只是通信协议,就是只管传输那一块的,那为什么不能使用ftp来显示网页?? ...

  6. 从 HTTP 到 HTTPS - 什么是 HTTPS

    这篇文章首发于我的个人网站:听说 - https://tasaid.com/,建议在我的个人网站阅读,拥有更好的阅读体验. 这篇文章与 博客园 和 Segmentfault 共享. 前端开发QQ群:3 ...

  7. Android事件分发机制浅谈(二)--源码分析(ViewGroup篇)

    上节我们大致了解了事件分发机制的内容,大概流程,这一节来分析下事件分发的源代码. 我们先来分析ViewGroup中dispatchTouchEvent()中的源码 public boolean dis ...

  8. 文件缓存(配合JSON数组)

    1.  写入缓存:建立文件夹,把list集合里面的数组转换为JSON数组,存入文件夹2.  读取缓存:把JSON数组从文件夹里面读取出来,然后放入list集合,返回list集合 private fin ...

  9. IO流的登录与注册

    import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File;import java.io.FileR ...

  10. jQuery 上传头像插件Jcrop的实例

    兼容:ie6+,FF,chrome等 示例图: CSS:     说明:图像比例为110:135     下载包里有 jquery.Jcrop.css          .jc-demo-box{po ...