用beam实现连接kafka和elasticSearch示例 在flink平台运行
示例实现beam用java编程,监听kafka的testmsg主题,然后将收取到的单词,按5秒做一次统计。结果输出到outputmessage 的kafka主题,同时同步到elasticSearch。
kafka需要运行
启动:
cd /root/kafuka/kafka_2.12-0.11.0.0
nohup bin/zookeeper-server-start.sh config/zookeeper.properties &
nohup bin/kafka-server-start.sh config/server.properties &
创建topic:
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic testmsg
bin/kafka-topics.sh --list --zookeeper localhost:2181
生产者producer
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
消费者consumer
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
elasticSearch
创建索引Put http://192.168.11.100:9200/myindex?pretty
查看所有索引: http://192.168.11.100:9200/_cat/indices?v 获取内容Get http://192.168.11.100:9200/myindex/_search?q=*&pretty
http://192.168.11.100:9200/myindex/_search?q=*&sort=_id:desc&pretty
用mvn自动生成项目代码:
windows在powershell中运行:
mvn archetype:generate `
-D archetypeGroupId=org.apache.beam `
-D archetypeArtifactId=beam-sdks-java-maven-archetypes-examples `
-D archetypeVersion=2.8.0 `
-D groupId=org.example `
-D artifactId=word-count-beam `
-D version="0.1" `
-D package=org.apache.beam.examples `
-D interactiveMode=false 其他参考beam官方文档: <https://beam.apache.org/get-started/quickstart-java/>
替换pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>org.example</groupId>
<artifactId>word-count-beam</artifactId>
<version>0.1</version> <packaging>jar</packaging> <properties>
<beam.version>2.8.0</beam.version> <bigquery.version>v2-rev402-1.24.1</bigquery.version>
<google-clients.version>1.24.1</google-clients.version>
<guava.version>20.0</guava.version>
<hamcrest.version>1.3</hamcrest.version>
<jackson.version>2.9.5</jackson.version>
<joda.version>2.4</joda.version>
<junit.version>4.12</junit.version>
<maven-compiler-plugin.version>3.7.0</maven-compiler-plugin.version>
<maven-exec-plugin.version>1.6.0</maven-exec-plugin.version>
<maven-jar-plugin.version>3.0.2</maven-jar-plugin.version>
<maven-shade-plugin.version>3.1.0</maven-shade-plugin.version>
<mockito.version>1.10.19</mockito.version>
<pubsub.version>v1-rev399-1.24.1</pubsub.version>
<slf4j.version>1.7.25</slf4j.version>
<spark.version>2.3.2</spark.version>
<hadoop.version>2.7.3</hadoop.version>
<maven-surefire-plugin.version>2.21.0</maven-surefire-plugin.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties> <repositories>
<repository>
<id>apache.snapshots</id>
<name>Apache Development Snapshot Repository</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories> <build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>${maven-compiler-plugin.version}</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin> <plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${maven-surefire-plugin.version}</version>
<configuration>
<parallel>all</parallel>
<threadCount>4</threadCount>
<redirectTestOutputToFile>true</redirectTestOutputToFile>
</configuration>
<dependencies>
<dependency>
<groupId>org.apache.maven.surefire</groupId>
<artifactId>surefire-junit47</artifactId>
<version>${maven-surefire-plugin.version}</version>
</dependency>
</dependencies>
</plugin> <!-- Ensure that the Maven jar plugin runs before the Maven
shade plugin by listing the plugin higher within the file. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>${maven-jar-plugin.version}</version>
</plugin> <!--
Configures `mvn package` to produce a bundled jar ("fat jar") for runners
that require this for job submission to a cluster.
-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>${maven-shade-plugin.version}</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<finalName>${project.artifactId}-bundled-${project.version}</finalName>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/LICENSE</exclude>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins> <pluginManagement>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>${maven-exec-plugin.version}</version>
<configuration>
<cleanupDaemonThreads>false</cleanupDaemonThreads>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build> <profiles>
<profile>
<id>direct-runner</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<!-- Makes the DirectRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>apex-runner</id>
<!-- Makes the ApexRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-apex</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
<!--
Apex depends on httpclient version 4.3.6, project has a transitive dependency to httpclient 4.0.1 from
google-http-client. Apex dependency version being specified explicitly so that it gets picked up. This
can be removed when the project no longer has a dependency on a different httpclient version.
-->
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.3.6</version>
<scope>runtime</scope>
<exclusions>
<exclusion>
<groupId>commons-codec</groupId>
<artifactId>commons-codec</artifactId>
</exclusion>
</exclusions>
</dependency>
<!--
Apex 3.6 is built against YARN 2.6. Version in the fat jar has to match
what's on the cluster, hence we need to repeat the Apex Hadoop dependencies here.
-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-yarn-client</artifactId>
<version>${hadoop.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>dataflow-runner</id>
<!-- Makes the DataflowRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-google-cloud-dataflow-java</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>flink-runner</id>
<!-- Makes the FlinkRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-flink_2.11</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>spark-runner</id>
<!-- Makes the SparkRunner available when running a pipeline. Additionally,
overrides some Spark dependencies to Beam-compatible versions. -->
<properties>
<netty.version>4.1.17.Final</netty.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-spark</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-hadoop-file-system</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
<scope>runtime</scope>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>jul-to-slf4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.11</artifactId>
<version>${jackson.version}</version>
<scope>runtime</scope>
</dependency>
<!-- [BEAM-3519] GCP IO exposes netty on its API surface, causing conflicts with runners -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-google-cloud-platform</artifactId>
<version>${beam.version}</version>
<exclusions>
<exclusion>
<groupId>io.grpc</groupId>
<artifactId>grpc-netty</artifactId>
</exclusion>
<exclusion>
<groupId>io.netty</groupId>
<artifactId>netty-handler</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</profile>
<profile>
<id>gearpump-runner</id>
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-gearpump</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile>
</profiles> <dependencies>
<!-- Adds a dependency on the Beam SDK. -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>${beam.version}</version>
</dependency> <!-- Adds a dependency on the Beam Google Cloud Platform IO module. -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-google-cloud-platform</artifactId>
<version>${beam.version}</version>
</dependency> <!-- Dependencies below this line are specific dependencies needed by the examples code. -->
<dependency>
<groupId>com.google.api-client</groupId>
<artifactId>google-api-client</artifactId>
<version>${google-clients.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>com.google.apis</groupId>
<artifactId>google-api-services-bigquery</artifactId>
<version>${bigquery.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>com.google.http-client</groupId>
<artifactId>google-http-client</artifactId>
<version>${google-clients.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>com.google.apis</groupId>
<artifactId>google-api-services-pubsub</artifactId>
<version>${pubsub.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>${joda.version}</version>
</dependency> <dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.version}</version>
</dependency> <!-- Add slf4j API frontend binding with JUL backend -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.version}</version>
</dependency> <dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-jdk14</artifactId>
<version>${slf4j.version}</version>
<!-- When loaded at runtime this will wire up slf4j to the JUL backend -->
<scope>runtime</scope>
</dependency> <!-- Hamcrest and JUnit are required dependencies of PAssert,
which is used in the main code of DebuggingWordCount example. -->
<dependency>
<groupId>org.hamcrest</groupId>
<artifactId>hamcrest-core</artifactId>
<version>${hamcrest.version}</version>
</dependency> <dependency>
<groupId>org.hamcrest</groupId>
<artifactId>hamcrest-library</artifactId>
<version>${hamcrest.version}</version>
</dependency> <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
</dependency> <!-- The DirectRunner is needed for unit tests. -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>${beam.version}</version>
<scope>test</scope>
</dependency> <dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>${mockito.version}</version>
<scope>test</scope>
</dependency> <!-- kafka -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-kafka</artifactId>
<version>${beam.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.0</version>
</dependency> <!-- kafka -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-elasticsearch</artifactId>
<version>${beam.version}</version>
</dependency> </dependencies>
</project>
将如下代码加入java目录 src/main/java/org.apache.beam.examples
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.beam.examples; import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.elasticsearch.ElasticsearchIO;
import org.apache.beam.sdk.io.kafka.KafkaIO;
import org.apache.beam.sdk.io.kafka.KafkaRecord;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.windowing.FixedWindows;
import org.apache.beam.sdk.transforms.windowing.Window;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.joda.time.Duration;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import com.google.common.collect.ImmutableMap;
//import org.apache.beam.runners.flink.FlinkRunner; public class KafkaSample { public static void main(String[] args) {
String hosts = "211.100.75.227:9092";// 192.168.1.110:11092,192.168.1.119:11092,192.168.1.120:11092 String sourceTopic = "testmsg";
// 创建管道工厂
WordCountOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(WordCountOptions.class); // 设置相关管道
Pipeline pipeline = Pipeline.create(options); // 这里 kV 后说明 kafka 中的 key 和 value 均为 String 类型
PCollection<KafkaRecord<String, String>> lines = pipeline.apply(KafkaIO.<String, String> read().withBootstrapServers(hosts)// 必需设置 kafka的服务器地址和端口
.withTopic(sourceTopic)// 必需设置要读取的 kafka 的 topic 名称
.withKeyDeserializer(StringDeserializer.class)// 必需序列化 key
.withValueDeserializer(StringDeserializer.class)
// 必需序列化 value
.updateConsumerProperties(ImmutableMap.<String, Object> of("auto.offset.reset", "latest")));// 这个属性
// kafka
// 最常见的.earliest
// 为输出的消息类型。或者进行处理后返回的消息类型
PCollection<String> kafkadata = lines.apply("Remove Kafka Metadata", ParDo.of(new DoFn<KafkaRecord<String, String>, String>() {
private static final long serialVersionUID = 1L; @ProcessElement
public void processElement(ProcessContext ctx) {
System.out.println("get from topic:" + ctx.element().getKV());
ctx.output(ctx.element().getKV().getValue());// 对kafka收到的消息处理
}
}));
PCollection<String> windowedEvents = kafkadata.apply(Window.<String> into(FixedWindows.of(Duration.standardSeconds(5))));
PCollection<KV<String, Long>> wordcount = windowedEvents.apply(Count.<String> perElement()); // 统计每一个
// kafka
// 消息的
// Count
PCollection<String> wordtj = wordcount.apply("ConcatResultKVs", MapElements.via( // 拼接最后的格式化输出(Key
// 为
// Word,Value
// 为
// Count)
new SimpleFunction<KV<String, Long>, String>() {
private static final long serialVersionUID = 1L; @Override
public String apply(KV<String, Long> input) {
System.out.println("key=" + input.getKey());
System.out.println("value=" + input.getValue());
String ret = " {\"" + input.getKey() + "\":\"" + input.getValue() + "\"}";
System.out.println(ret);
return ret;
}
})); /* sink to kafka*/
wordtj.apply(KafkaIO.<Void, String> write().withBootstrapServers(hosts)// 设置写会
// kafka
// 的集群配置地址
.withTopic("outputmessage")// 设置返回 kafka 的消息主题
// .withKeySerializer(StringSerializer.class)// 这里不用设置了,因为上面
// Void
.withValueSerializer(StringSerializer.class)
// Dataflow runner and Spark 兼容, Flink 对 kafka0.11 才支持。我的版本是
// 0.10 不兼容
// .withEOS(20, "eos-sink-group-id")
.values() // 只需要在此写入默认的 key 就行了,默认为 null 值
); // 输出结果 /* sink to elasticsearch */
String[] addresses = { "http://192.168.11.100:9200" };
wordtj.apply(ElasticsearchIO.write().withConnectionConfiguration(ElasticsearchIO.ConnectionConfiguration.create(addresses, "myindex", "testdoc"))); pipeline.run().waitUntilFinish();
} public interface WordCountOptions extends PipelineOptions { /**
* By default, this example reads from a public dataset containing the
* text of King Lear. Set this option to choose a different input file
* or glob.
*/
@Description("Path of the file to read from")
@Default.String("gs://apache-beam-samples/shakespeare/kinglear.txt")
String getInputFile(); void setInputFile(String value); /** Set this required option to specify where to write the output. */
@Description("Path of the file to write to")
@Required
String getOutput(); void setOutput(String value);
} private static final Logger logger = LoggerFactory.getLogger(KafkaSample.class); /**
* Options supported by {@link WordCount}.
*
* <p>
* Concept #4: Defining your own configuration options. Here, you can add
* your own arguments to be processed by the command-line parser, and
* specify default values for them. You can then access the options values
* in your pipeline code.
*
* <p>
* Inherits standard configuration options.
*/
public interface KFOptions extends PipelineOptions { /**
* By default, this example reads from a public dataset containing the
* text of King Lear. Set this option to choose a different input file
* or glob.
*/
@Description("Path of the file to read from")
@Default.String("211.100.75.227:9092")
String getBrokers(); void setBrokers(String value); }
}
修改里面kafka地址,elasticSearch地址。大功告成,可以执行了!
beam平台直接运行:
Direct-Local runner
mvn compile exec:java -D exec.mainClass=org.apache.beam.examples.KafkaSample `
-D exec.args="--inputFile=pom.xml --output=counts" -P direct-runner
自启动Flink local平台上运行:
mvn compile exec:java -D exec.mainClass=org.apache.beam.examples.KafkaSample `
-D exec.args="--runner=FlinkRunner --inputFile=pom.xml --output=counts" -P flink-runner
打包放入已经运行的flink local平台上运行:
mvn package -Pflink-runner
这样可以打包后,上传到flink,指定启动类:
--runner=FlinkRunner --inputFile=C:\path\to\quickstart\pom.xml --output=C:\tmp\counts --filesToStage=.\target\word-count-beam-bundled-0.1.jar org.apache.beam.examples.KafkaSample


遇到的问题:
1,kafka收到的json,普通的可以导入elasticSearch。比如
{
“field":"value",
"filed1:"value"
}
但是如果字串里面带有冒号等字符,会报错,后来发现写在一行可以通过。比如
{"mytime": "2018-12-13T06:44:41.460Z","carColor":"blue"}
可能和elasticSearch的_bulk批量插入有关。
用beam实现连接kafka和elasticSearch示例 在flink平台运行的更多相关文章
- 使用Akka、Kafka和ElasticSearch等构建分析引擎 -- good
本文翻译自Building Analytics Engine Using Akka, Kafka & ElasticSearch,已获得原作者Satendra Kumar和网站授权. 在这篇文 ...
- Flink SQL结合Kafka、Elasticsearch、Kibana实时分析电商用户行为
body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...
- 一个非常标准的Java连接Oracle数据库的示例代码
最基本的Oracle数据库连接代码(只针对Oracle11g): 1.右键项目->构建路径->配置构建路径,选择第三项“库”,然后点击“添加外部Jar”,选择“D:\Oracle\app\ ...
- Java连接Oracle数据库的示例代码
最基本的Oracle数据库连接代码(只针对Oracle11g): 1.右键项目->构建路径 ->配置构建路径,选择第三项“库”,然后点击“添加外部Jar”,选择 “D:\Oracle\ap ...
- 一个非常标准的连接Mysql数据库的示例代码
一.About Mysql 1.Mysql 优点 体积小.速度快.开放源码.免费 一般中小型网站的开发都选择 MySQL ,最流行的关系型数据库 LAMP / LNMP Linux作为操作系统 Apa ...
- 物联网架构成长之路(8)-EMQ-Hook了解、连接Kafka发送消息
1. 前言 按照我自己设计的物联网框架,对于MQTT集群中的所有消息,是要持久化到磁盘的,这里采用一个消息队列中间件Kafka作为数据缓冲,缓冲结果存到数据仓库中,以供后续作为数据分析.由于MQTT集 ...
- java实现Kafka的消费者示例
使用java实现Kafka的消费者 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 ...
- SpringBoot 连接kafka ssl 报 CertificateException: No subject alternative names present 异常解决
当使用较新版本SpringBoot时,对应的 kafka-client 版本也比较新,如果使用了 2.x 以上的 kafka-client ,并且配置了 kafka ssl 连接方式时,可能会报如下异 ...
- Java连接简单使用ElasticSearch
目录 1. 添加依赖 2. 代码,无账号密码 3. 代码,有账号密码,并且是https方式 4. 参考文章 1. 添加依赖 <!-- https://mvnrepository.com/arti ...
随机推荐
- 当Flutter遇到节流与防抖
相信web前端的开发者都或多或少的遇到过节流与防抖的问题.函数节流和函数防抖,两者都是优化执行代码效率的一种手段.在一定时间内,代码执行的次数不一定是越多越好.相反,频繁的触发或者执行代码,会造成大量 ...
- Android Studio集成Flutter
首先Flutter中文网教程地址:https://flutterchina.club/get-started/install/ 1.新建环境变量 变量名:PUB_HOSTED_URL 变量值:http ...
- c# 多线程委托传参方式
1.定义一个线程调用的方法函数 private void RTPServer(object _Serverip) { IPEndPoint Serverip = _Serverip as IPEndP ...
- iOS 12.1 跳转页面时 tabBar闪动
最新iOS 12.1系统,self.hidesBottomBarWhenPushed = YES,tabBar发生闪动 设置为不透明就行了.[[UITabBar appearance] setTran ...
- LeetCode算法题-Relative Ranks(Java实现)
这是悦乐书的第248次更新,第261篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第115题(顺位题号是506).根据N名运动员的得分,找到他们的相对等级和得分最高的三个 ...
- python selenium2 中的显示等待WebDriverWait与条件判断expected_conditions举例
#coding=utf-8from selenium import webdriverfrom selenium.webdriver.common.by import Byfrom selenium. ...
- 与非java语言使用RSA加解密遇到的问题:algid parse error, not a sequence
遇到的问题 在一个与Ruby语言对接的项目中,决定使用RSA算法来作为数据传输的加密与签名算法.但是,在使用Ruby生成后给我的私钥时,却发生了异常:IOException: algid parse ...
- Python开发【内置模块篇】collections
namedtuple namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素. 这样一来,我们用name ...
- hbase参数配置优化
因官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果.所以我以配置项驱动,重新整理了原文,并补充一些自己的理解,如有错误,欢迎指正. 配置优化 zo ...
- 不安分的 Go 语言开始入侵 Web 前端领域了!( WebAssembly )
参考:https://blog.csdn.net/csdnnews/article/details/84038848 从 Go 语言诞生以来,它就开始不断侵蚀 Java .C.C++ 语言的领地.今年 ...