示例实现beam用java编程,监听kafka的testmsg主题,然后将收取到的单词,按5秒做一次统计。结果输出到outputmessage 的kafka主题,同时同步到elasticSearch。

kafka需要运行

启动:
cd /root/kafuka/kafka_2.12-0.11.0.0
nohup bin/zookeeper-server-start.sh config/zookeeper.properties &
nohup bin/kafka-server-start.sh config/server.properties &
创建topic:
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic testmsg
bin/kafka-topics.sh --list --zookeeper localhost:2181
生产者producer
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
消费者consumer
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning

elasticSearch

创建索引Put http://192.168.11.100:9200/myindex?pretty
查看所有索引: http://192.168.11.100:9200/_cat/indices?v 获取内容Get http://192.168.11.100:9200/myindex/_search?q=*&pretty
http://192.168.11.100:9200/myindex/_search?q=*&sort=_id:desc&pretty

用mvn自动生成项目代码:

windows在powershell中运行:
mvn archetype:generate `
-D archetypeGroupId=org.apache.beam `
-D archetypeArtifactId=beam-sdks-java-maven-archetypes-examples `
-D archetypeVersion=2.8.0 `
-D groupId=org.example `
-D artifactId=word-count-beam `
-D version="0.1" `
-D package=org.apache.beam.examples `
-D interactiveMode=false 其他参考beam官方文档: <https://beam.apache.org/get-started/quickstart-java/>

替换pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>org.example</groupId>
<artifactId>word-count-beam</artifactId>
<version>0.1</version> <packaging>jar</packaging> <properties>
<beam.version>2.8.0</beam.version> <bigquery.version>v2-rev402-1.24.1</bigquery.version>
<google-clients.version>1.24.1</google-clients.version>
<guava.version>20.0</guava.version>
<hamcrest.version>1.3</hamcrest.version>
<jackson.version>2.9.5</jackson.version>
<joda.version>2.4</joda.version>
<junit.version>4.12</junit.version>
<maven-compiler-plugin.version>3.7.0</maven-compiler-plugin.version>
<maven-exec-plugin.version>1.6.0</maven-exec-plugin.version>
<maven-jar-plugin.version>3.0.2</maven-jar-plugin.version>
<maven-shade-plugin.version>3.1.0</maven-shade-plugin.version>
<mockito.version>1.10.19</mockito.version>
<pubsub.version>v1-rev399-1.24.1</pubsub.version>
<slf4j.version>1.7.25</slf4j.version>
<spark.version>2.3.2</spark.version>
<hadoop.version>2.7.3</hadoop.version>
<maven-surefire-plugin.version>2.21.0</maven-surefire-plugin.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties> <repositories>
<repository>
<id>apache.snapshots</id>
<name>Apache Development Snapshot Repository</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories> <build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>${maven-compiler-plugin.version}</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin> <plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>${maven-surefire-plugin.version}</version>
<configuration>
<parallel>all</parallel>
<threadCount>4</threadCount>
<redirectTestOutputToFile>true</redirectTestOutputToFile>
</configuration>
<dependencies>
<dependency>
<groupId>org.apache.maven.surefire</groupId>
<artifactId>surefire-junit47</artifactId>
<version>${maven-surefire-plugin.version}</version>
</dependency>
</dependencies>
</plugin> <!-- Ensure that the Maven jar plugin runs before the Maven
shade plugin by listing the plugin higher within the file. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>${maven-jar-plugin.version}</version>
</plugin> <!--
Configures `mvn package` to produce a bundled jar ("fat jar") for runners
that require this for job submission to a cluster.
-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>${maven-shade-plugin.version}</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<finalName>${project.artifactId}-bundled-${project.version}</finalName>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/LICENSE</exclude>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins> <pluginManagement>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>${maven-exec-plugin.version}</version>
<configuration>
<cleanupDaemonThreads>false</cleanupDaemonThreads>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build> <profiles>
<profile>
<id>direct-runner</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<!-- Makes the DirectRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>apex-runner</id>
<!-- Makes the ApexRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-apex</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
<!--
Apex depends on httpclient version 4.3.6, project has a transitive dependency to httpclient 4.0.1 from
google-http-client. Apex dependency version being specified explicitly so that it gets picked up. This
can be removed when the project no longer has a dependency on a different httpclient version.
-->
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.3.6</version>
<scope>runtime</scope>
<exclusions>
<exclusion>
<groupId>commons-codec</groupId>
<artifactId>commons-codec</artifactId>
</exclusion>
</exclusions>
</dependency>
<!--
Apex 3.6 is built against YARN 2.6. Version in the fat jar has to match
what's on the cluster, hence we need to repeat the Apex Hadoop dependencies here.
-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-yarn-client</artifactId>
<version>${hadoop.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>dataflow-runner</id>
<!-- Makes the DataflowRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-google-cloud-dataflow-java</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>flink-runner</id>
<!-- Makes the FlinkRunner available when running a pipeline. -->
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-flink_2.11</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile> <profile>
<id>spark-runner</id>
<!-- Makes the SparkRunner available when running a pipeline. Additionally,
overrides some Spark dependencies to Beam-compatible versions. -->
<properties>
<netty.version>4.1.17.Final</netty.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-spark</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-hadoop-file-system</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
<scope>runtime</scope>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>jul-to-slf4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.11</artifactId>
<version>${jackson.version}</version>
<scope>runtime</scope>
</dependency>
<!-- [BEAM-3519] GCP IO exposes netty on its API surface, causing conflicts with runners -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-google-cloud-platform</artifactId>
<version>${beam.version}</version>
<exclusions>
<exclusion>
<groupId>io.grpc</groupId>
<artifactId>grpc-netty</artifactId>
</exclusion>
<exclusion>
<groupId>io.netty</groupId>
<artifactId>netty-handler</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</profile>
<profile>
<id>gearpump-runner</id>
<dependencies>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-gearpump</artifactId>
<version>${beam.version}</version>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile>
</profiles> <dependencies>
<!-- Adds a dependency on the Beam SDK. -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>${beam.version}</version>
</dependency> <!-- Adds a dependency on the Beam Google Cloud Platform IO module. -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-google-cloud-platform</artifactId>
<version>${beam.version}</version>
</dependency> <!-- Dependencies below this line are specific dependencies needed by the examples code. -->
<dependency>
<groupId>com.google.api-client</groupId>
<artifactId>google-api-client</artifactId>
<version>${google-clients.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>com.google.apis</groupId>
<artifactId>google-api-services-bigquery</artifactId>
<version>${bigquery.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>com.google.http-client</groupId>
<artifactId>google-http-client</artifactId>
<version>${google-clients.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>com.google.apis</groupId>
<artifactId>google-api-services-pubsub</artifactId>
<version>${pubsub.version}</version>
<exclusions>
<!-- Exclude an old version of guava that is being pulled
in by a transitive dependency of google-api-client -->
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava-jdk5</artifactId>
</exclusion>
</exclusions>
</dependency> <dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>${joda.version}</version>
</dependency> <dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.version}</version>
</dependency> <!-- Add slf4j API frontend binding with JUL backend -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.version}</version>
</dependency> <dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-jdk14</artifactId>
<version>${slf4j.version}</version>
<!-- When loaded at runtime this will wire up slf4j to the JUL backend -->
<scope>runtime</scope>
</dependency> <!-- Hamcrest and JUnit are required dependencies of PAssert,
which is used in the main code of DebuggingWordCount example. -->
<dependency>
<groupId>org.hamcrest</groupId>
<artifactId>hamcrest-core</artifactId>
<version>${hamcrest.version}</version>
</dependency> <dependency>
<groupId>org.hamcrest</groupId>
<artifactId>hamcrest-library</artifactId>
<version>${hamcrest.version}</version>
</dependency> <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
</dependency> <!-- The DirectRunner is needed for unit tests. -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>${beam.version}</version>
<scope>test</scope>
</dependency> <dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>${mockito.version}</version>
<scope>test</scope>
</dependency> <!-- kafka -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-kafka</artifactId>
<version>${beam.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>0.11.0.0</version>
</dependency> <!-- kafka -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-elasticsearch</artifactId>
<version>${beam.version}</version>
</dependency> </dependencies>
</project>

将如下代码加入java目录 src/main/java/org.apache.beam.examples

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.beam.examples; import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.elasticsearch.ElasticsearchIO;
import org.apache.beam.sdk.io.kafka.KafkaIO;
import org.apache.beam.sdk.io.kafka.KafkaRecord;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.windowing.FixedWindows;
import org.apache.beam.sdk.transforms.windowing.Window;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.joda.time.Duration;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import com.google.common.collect.ImmutableMap;
//import org.apache.beam.runners.flink.FlinkRunner; public class KafkaSample { public static void main(String[] args) {
String hosts = "211.100.75.227:9092";// 192.168.1.110:11092,192.168.1.119:11092,192.168.1.120:11092 String sourceTopic = "testmsg";
// 创建管道工厂
WordCountOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(WordCountOptions.class); // 设置相关管道
Pipeline pipeline = Pipeline.create(options); // 这里 kV 后说明 kafka 中的 key 和 value 均为 String 类型
PCollection<KafkaRecord<String, String>> lines = pipeline.apply(KafkaIO.<String, String> read().withBootstrapServers(hosts)// 必需设置 kafka的服务器地址和端口
.withTopic(sourceTopic)// 必需设置要读取的 kafka 的 topic 名称
.withKeyDeserializer(StringDeserializer.class)// 必需序列化 key
.withValueDeserializer(StringDeserializer.class)
// 必需序列化 value
.updateConsumerProperties(ImmutableMap.<String, Object> of("auto.offset.reset", "latest")));// 这个属性
// kafka
// 最常见的.earliest
// 为输出的消息类型。或者进行处理后返回的消息类型
PCollection<String> kafkadata = lines.apply("Remove Kafka Metadata", ParDo.of(new DoFn<KafkaRecord<String, String>, String>() {
private static final long serialVersionUID = 1L; @ProcessElement
public void processElement(ProcessContext ctx) {
System.out.println("get from topic:" + ctx.element().getKV());
ctx.output(ctx.element().getKV().getValue());// 对kafka收到的消息处理
}
}));
PCollection<String> windowedEvents = kafkadata.apply(Window.<String> into(FixedWindows.of(Duration.standardSeconds(5))));
PCollection<KV<String, Long>> wordcount = windowedEvents.apply(Count.<String> perElement()); // 统计每一个
// kafka
// 消息的
// Count
PCollection<String> wordtj = wordcount.apply("ConcatResultKVs", MapElements.via( // 拼接最后的格式化输出(Key
// 为
// Word,Value
// 为
// Count)
new SimpleFunction<KV<String, Long>, String>() {
private static final long serialVersionUID = 1L; @Override
public String apply(KV<String, Long> input) {
System.out.println("key=" + input.getKey());
System.out.println("value=" + input.getValue());
String ret = " {\"" + input.getKey() + "\":\"" + input.getValue() + "\"}";
System.out.println(ret);
return ret;
}
})); /* sink to kafka*/
wordtj.apply(KafkaIO.<Void, String> write().withBootstrapServers(hosts)// 设置写会
// kafka
// 的集群配置地址
.withTopic("outputmessage")// 设置返回 kafka 的消息主题
// .withKeySerializer(StringSerializer.class)// 这里不用设置了,因为上面
// Void
.withValueSerializer(StringSerializer.class)
// Dataflow runner and Spark 兼容, Flink 对 kafka0.11 才支持。我的版本是
// 0.10 不兼容
// .withEOS(20, "eos-sink-group-id")
.values() // 只需要在此写入默认的 key 就行了,默认为 null 值
); // 输出结果 /* sink to elasticsearch */
String[] addresses = { "http://192.168.11.100:9200" };
wordtj.apply(ElasticsearchIO.write().withConnectionConfiguration(ElasticsearchIO.ConnectionConfiguration.create(addresses, "myindex", "testdoc"))); pipeline.run().waitUntilFinish();
} public interface WordCountOptions extends PipelineOptions { /**
* By default, this example reads from a public dataset containing the
* text of King Lear. Set this option to choose a different input file
* or glob.
*/
@Description("Path of the file to read from")
@Default.String("gs://apache-beam-samples/shakespeare/kinglear.txt")
String getInputFile(); void setInputFile(String value); /** Set this required option to specify where to write the output. */
@Description("Path of the file to write to")
@Required
String getOutput(); void setOutput(String value);
} private static final Logger logger = LoggerFactory.getLogger(KafkaSample.class); /**
* Options supported by {@link WordCount}.
*
* <p>
* Concept #4: Defining your own configuration options. Here, you can add
* your own arguments to be processed by the command-line parser, and
* specify default values for them. You can then access the options values
* in your pipeline code.
*
* <p>
* Inherits standard configuration options.
*/
public interface KFOptions extends PipelineOptions { /**
* By default, this example reads from a public dataset containing the
* text of King Lear. Set this option to choose a different input file
* or glob.
*/
@Description("Path of the file to read from")
@Default.String("211.100.75.227:9092")
String getBrokers(); void setBrokers(String value); }
}

修改里面kafka地址,elasticSearch地址。大功告成,可以执行了!

beam平台直接运行:

Direct-Local runner
mvn compile exec:java -D exec.mainClass=org.apache.beam.examples.KafkaSample `
-D exec.args="--inputFile=pom.xml --output=counts" -P direct-runner

自启动Flink local平台上运行:

 mvn compile exec:java -D exec.mainClass=org.apache.beam.examples.KafkaSample `
-D exec.args="--runner=FlinkRunner --inputFile=pom.xml --output=counts" -P flink-runner

打包放入已经运行的flink local平台上运行:

mvn package -Pflink-runner
这样可以打包后,上传到flink,指定启动类:
--runner=FlinkRunner --inputFile=C:\path\to\quickstart\pom.xml --output=C:\tmp\counts --filesToStage=.\target\word-count-beam-bundled-0.1.jar org.apache.beam.examples.KafkaSample


遇到的问题:

1,kafka收到的json,普通的可以导入elasticSearch。比如

{

“field":"value",

"filed1:"value"

}

但是如果字串里面带有冒号等字符,会报错,后来发现写在一行可以通过。比如

{"mytime": "2018-12-13T06:44:41.460Z","carColor":"blue"}

可能和elasticSearch的_bulk批量插入有关。

用beam实现连接kafka和elasticSearch示例 在flink平台运行的更多相关文章

  1. 使用Akka、Kafka和ElasticSearch等构建分析引擎 -- good

    本文翻译自Building Analytics Engine Using Akka, Kafka & ElasticSearch,已获得原作者Satendra Kumar和网站授权. 在这篇文 ...

  2. Flink SQL结合Kafka、Elasticsearch、Kibana实时分析电商用户行为

    body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...

  3. 一个非常标准的Java连接Oracle数据库的示例代码

    最基本的Oracle数据库连接代码(只针对Oracle11g): 1.右键项目->构建路径->配置构建路径,选择第三项“库”,然后点击“添加外部Jar”,选择“D:\Oracle\app\ ...

  4. Java连接Oracle数据库的示例代码

    最基本的Oracle数据库连接代码(只针对Oracle11g): 1.右键项目->构建路径 ->配置构建路径,选择第三项“库”,然后点击“添加外部Jar”,选择 “D:\Oracle\ap ...

  5. 一个非常标准的连接Mysql数据库的示例代码

    一.About Mysql 1.Mysql 优点 体积小.速度快.开放源码.免费 一般中小型网站的开发都选择 MySQL ,最流行的关系型数据库 LAMP / LNMP Linux作为操作系统 Apa ...

  6. 物联网架构成长之路(8)-EMQ-Hook了解、连接Kafka发送消息

    1. 前言 按照我自己设计的物联网框架,对于MQTT集群中的所有消息,是要持久化到磁盘的,这里采用一个消息队列中间件Kafka作为数据缓冲,缓冲结果存到数据仓库中,以供后续作为数据分析.由于MQTT集 ...

  7. java实现Kafka的消费者示例

    使用java实现Kafka的消费者 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 ...

  8. SpringBoot 连接kafka ssl 报 CertificateException: No subject alternative names present 异常解决

    当使用较新版本SpringBoot时,对应的 kafka-client 版本也比较新,如果使用了 2.x 以上的 kafka-client ,并且配置了 kafka ssl 连接方式时,可能会报如下异 ...

  9. Java连接简单使用ElasticSearch

    目录 1. 添加依赖 2. 代码,无账号密码 3. 代码,有账号密码,并且是https方式 4. 参考文章 1. 添加依赖 <!-- https://mvnrepository.com/arti ...

随机推荐

  1. C++ 11 创建和使用共享 weak_ptr

    1.为什么需要weak_ptr? 在正式介绍weak_ptr之前,我们先来回忆一下shared_ptr的一些知识.我们知道shared_ptr是采用引用计数的智能指针,多个shared_ptr实例可以 ...

  2. SQL SERVER 索引碎片

    一次发现同样的SQL在线上库和复制库执行时间差好多,重新创建相关表索引,性能提升明显,怀疑索引有碎片

  3. 生成Csv格式的字符串

    using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using Sy ...

  4. 批处理基础知识-EXIT

    本文主要介绍批处理EXIT命令的使用. 阅读须知: 在开始阅读本文之前,您需要知道批处理CALL命令和ERRORLEVEL相关知识,若您没有接触过类似信息,建议goole或baidu. EXIT命令格 ...

  5. cesium加载纽约市3dtiles模型

    const tileset = new Cesium.Cesium3DTileset({ url: '../../assets/data/NewYork/tileset.json' }); viewe ...

  6. eclipse去除对js文件的检测

  7. centos7源码包安装Mongodb,并设置开机自启动

    1.下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.2.12.tgz 2.解压 放到 /usr/local/ ...

  8. nginx报错:failed (13: Permission denied)

    vim nginx.conf 修改user nginx为当前系统用户,如:user root

  9. SDOI 2019 R1游记

    $SDOI$ $2019$ $R1$游记 昨天才刚回来,今天就来写游记啦! Day -5: 做了一下去年省选的Day1,感觉很神仙. Day -4: 做了一下去年省选的Day2,感觉还是很神仙. Da ...

  10. Mango 基础知识

    1 mongdb和python交互的模块 pymongo 提供了mongdb和python交互的所有方法 安装方式: pip install pymongo 2 使用pymongo 1. 导入pymo ...