题目:

GCD Again

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 125 Accepted Submission(s): 84
 
Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No?

Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!

 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
            For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
2007省赛集训队练习赛(10)_以此感谢DOOMIII
 
Recommend
lcy
 

题目分析:

欧拉函数的简单应用。本体先使用phi(n)求出[1,n]中与n互质的元素的个数,然后再使用n-phi(n)求出[1,n]中与

n不互质的元素的个数就可以。最后还须要把它自己给减掉。也就是n-phi(n)-1.

这道题须要的须要注意的是:

1、在这里,我们还回想一下"互质"的定义:

互质,公约数仅仅有1的两个整数,叫做互质整数·公约数仅仅有1的两个自然数,叫做互质自然数,后者是前者的特殊情形·。

2、关于使用预处理的方式来求欧拉值  和  使用phi(n)来求欧拉值得两种方式的选择的个人考虑:

1)当n比較小 。同一个输入例子须要多次用到phi[i]时,这时能够考虑使用预处理的方式。假设当n比較大的时候仍使用这样的方式,非常可能会直接MLE,如这道题。

2)当n比較大,同一个输入例子仅仅须要使用一个phi[i]时,这是我们能够考虑使用调用phi(i)的方式。

代码例如以下:

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include <algorithm>
using namespace std; typedef unsigned long long int longint; longint phi(longint num) {
longint sum = 1;
for (long int i = 2; i <= sqrt((double long) num); i++) {
if (num % i == 0) {
while (num % i == 0) {
sum *= i;
num /= i;
}
sum /= i;
sum *= (i - 1);
}
} if (num != 1) {
sum *= (num - 1);
} return sum;
} int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
/**
* 最后为什么要减1呢?
* 由于这道题要求的是[1,n)中与n不互质的元素的个数,
* 须要把n自己给减掉.
*/
printf("%lld\n",n - phi(n) - 1);
} return 0;
}

(hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)的更多相关文章

  1. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  2. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  3. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  4. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  6. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  9. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

随机推荐

  1. ningbooj--1655--木块拼接(贪心)

     [1655] 木块拼接 时间限制: 1000 ms 内存限制: 65535 K 问题描述 好奇的skyv95想要做一个正方形的木块,现在有三种颜色的矩形木块,颜色分别为"A" ...

  2. Servlet初始化与异步支持

    Shared libraries(共享库) / runtimes pluggability(运行时插件能力) 1.Servlet容器启动会扫描,当前应用里面每一个jar包的 ServletContai ...

  3. Python 1:环境搭建及运行第一个程序

    在计算机控制面板中找到系统,然后点击高级系统设置,再点击环境变量,把安装的python.exe的目录复制到下面系统变量的path栏最后面,复制前加个分号以隔开前面的变量,然后按3次确定即可退出配置.具 ...

  4. python重定向原理及实例

    1. 前言 为了在Python编程中, 利用控制台信息, 我们需要对控制台输出进行接管(重定向).在Python中,控制台输出的接口是sys.stdout,通过分析print与sys.stdout之间 ...

  5. jquery.validate验证text,checkbox,radio,selected

    index.cshtml <form id="formLogin" method="post"> <div> <label for ...

  6. 关于php初学者的理解!请大家浏览并指出不足!谢谢!

    昨天开始学习php,由于之前是学习.NET的,刚接触php,就关于语法就是各种不适应,什么js,jq在脑子里一团浆糊..过了一天感觉好了点,现在有点想法,大家欢迎交流批评! 今天用php做了个登录,判 ...

  7. 45.4.7 序列:USER_SEQUENCES(SEQ)

    45.4.7 序列:USER_SEQUENCES(SEQ) 要显示序列的属性,可以查询USER_SEQUENCES 数据字典视图.该视图也能用公有同义词SEQ 进行查询.USER_SEQUENCES ...

  8. C#关闭退出线程的几种方法

    .Application.Exit(); //强制所有消息中止,退出所有的窗体,但是若有托管线程(非主线程),也无法干净地退出: .System.Environment.Exit(); //无论在主线 ...

  9. selenium有多个窗口时操作某个窗口的内容

    这个页面点击html/css后会弹出一个新的窗口,此时要操作新的窗口的内容,使用switchTo 跳转代码 driver.get("https://www.imooc.com"); ...

  10. c# 读取 XML

    XmlDocument xmldoc = new XmlDocument(); string xmlPath = HttpContext.Server.MapPath("~/*****.xm ...