题目:

GCD Again

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 125 Accepted Submission(s): 84
 
Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No?

Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!

 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
            For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
2007省赛集训队练习赛(10)_以此感谢DOOMIII
 
Recommend
lcy
 

题目分析:

欧拉函数的简单应用。本体先使用phi(n)求出[1,n]中与n互质的元素的个数,然后再使用n-phi(n)求出[1,n]中与

n不互质的元素的个数就可以。最后还须要把它自己给减掉。也就是n-phi(n)-1.

这道题须要的须要注意的是:

1、在这里,我们还回想一下"互质"的定义:

互质,公约数仅仅有1的两个整数,叫做互质整数·公约数仅仅有1的两个自然数,叫做互质自然数,后者是前者的特殊情形·。

2、关于使用预处理的方式来求欧拉值  和  使用phi(n)来求欧拉值得两种方式的选择的个人考虑:

1)当n比較小 。同一个输入例子须要多次用到phi[i]时,这时能够考虑使用预处理的方式。假设当n比較大的时候仍使用这样的方式,非常可能会直接MLE,如这道题。

2)当n比較大,同一个输入例子仅仅须要使用一个phi[i]时,这是我们能够考虑使用调用phi(i)的方式。

代码例如以下:

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include <algorithm>
using namespace std; typedef unsigned long long int longint; longint phi(longint num) {
longint sum = 1;
for (long int i = 2; i <= sqrt((double long) num); i++) {
if (num % i == 0) {
while (num % i == 0) {
sum *= i;
num /= i;
}
sum /= i;
sum *= (i - 1);
}
} if (num != 1) {
sum *= (num - 1);
} return sum;
} int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
/**
* 最后为什么要减1呢?
* 由于这道题要求的是[1,n)中与n不互质的元素的个数,
* 须要把n自己给减掉.
*/
printf("%lld\n",n - phi(n) - 1);
} return 0;
}

(hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)的更多相关文章

  1. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  2. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  3. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  4. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  6. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  9. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

随机推荐

  1. hdoj--5619--Jam's store(最小费用最大流)

    Jam's store Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

  2. Bayesian Regression

    Thus we see that there are very close similarities between this Bayesian viewpoint and the conventio ...

  3. git拉取远端改变,但是不覆盖本地的修改

    1.git stash 2.git  fetch weixin-old-remote 3.git rebase weixin-old-remote/main151028_wxpay_main15100 ...

  4. HTTP权威协议笔记-8.集成点:网关、隧道及中继

    .8.1 网关 定义:网关类似与翻译器,它抽象出了一种能够到达资源的方法. 实用:网关可以自动将HTTP流量转换为其他协议,这样使用HTTP协议的一方就不需要了解其他协议,也可实现与其他程序或设备交互 ...

  5. PCB Genesis增加点阵字 实现原理

    我们采用Genesis增加点阵字时,用Genesis增加Canned Text即可,但奥宝中文不支持,且字符种类是有限的呀 不过没关系,没有自己造呀.在这里我分享一种增加点阵字的实现方法 一.通过代码 ...

  6. Python 41 完整查询语句 和 一堆关键字

    一:完整查询语句 1.拷贝表 *** create table copy_table select *from customer ; 拷贝结构 与数据 create table copy_table ...

  7. ACM_开心消消乐

    开心消消乐 Time Limit: 2000/1000ms (Java/Others) Problem Description: 大白最近喜欢上了开心消消乐,于是英语基础好的他准备让课文中英语句子也来 ...

  8. Mysql Event 自动分表

    create table TempComments Like dycomments; 上述 SQL语句创建的新表带有原表的所有属性,主键,索引等. 自动分表怎么做呢? 使用上述语句自动创建分表. 那么 ...

  9. 1、Scala安装与基础

    1.scala与java 2.安装 3.scala编译器 4.变量声明 5.数据类型 6.操作符 7.函数调用 8.apply函数 1.scala与java scala基于java虚拟机,所有scal ...

  10. 图方法:寻找无向图联通子集的JAVA版本

    图像处理中一般使用稠密方法,即对图像进行像素集合进行处理.在图像拓扑方面,更多地应用图计算方法. 寻找无向图联通子集的JAVA版本,代码: //查找无向图的所有连通子集//wishchin!!! pu ...