题目:

GCD Again

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 125 Accepted Submission(s): 84
 
Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No?

Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!

 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
            For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
2007省赛集训队练习赛(10)_以此感谢DOOMIII
 
Recommend
lcy
 

题目分析:

欧拉函数的简单应用。本体先使用phi(n)求出[1,n]中与n互质的元素的个数,然后再使用n-phi(n)求出[1,n]中与

n不互质的元素的个数就可以。最后还须要把它自己给减掉。也就是n-phi(n)-1.

这道题须要的须要注意的是:

1、在这里,我们还回想一下"互质"的定义:

互质,公约数仅仅有1的两个整数,叫做互质整数·公约数仅仅有1的两个自然数,叫做互质自然数,后者是前者的特殊情形·。

2、关于使用预处理的方式来求欧拉值  和  使用phi(n)来求欧拉值得两种方式的选择的个人考虑:

1)当n比較小 。同一个输入例子须要多次用到phi[i]时,这时能够考虑使用预处理的方式。假设当n比較大的时候仍使用这样的方式,非常可能会直接MLE,如这道题。

2)当n比較大,同一个输入例子仅仅须要使用一个phi[i]时,这是我们能够考虑使用调用phi(i)的方式。

代码例如以下:

#include <iostream>
#include <stdio.h>
#include <string>
#include <cmath>
#include <algorithm>
using namespace std; typedef unsigned long long int longint; longint phi(longint num) {
longint sum = 1;
for (long int i = 2; i <= sqrt((double long) num); i++) {
if (num % i == 0) {
while (num % i == 0) {
sum *= i;
num /= i;
}
sum /= i;
sum *= (i - 1);
}
} if (num != 1) {
sum *= (num - 1);
} return sum;
} int main(){
int n;
while(scanf("%d",&n)!=EOF,n){
/**
* 最后为什么要减1呢?
* 由于这道题要求的是[1,n)中与n不互质的元素的个数,
* 须要把n自己给减掉.
*/
printf("%lld\n",n - phi(n) - 1);
} return 0;
}

(hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)的更多相关文章

  1. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  2. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  3. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  4. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  5. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  6. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  9. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

随机推荐

  1. 利用python+tkinter开发一个点名软件

    最近上课学生多名字记不住,名册忘记了带,要点名怎么办,好久没有写代码了,于是自己写了个点名软件,记录下吧,第一次接触TK也不是太熟悉,写的不太好,记录下源代码 以后遇到要写桌面软件还是可以耍耍的. t ...

  2. 【NOIP2018】 游记

    All ended? [day 0] 一点感觉没有,不过翘掉了早上的课(当然还有前三周的课),然后刚想睡一会儿,就被通知要上车了/难受 在车上玩了一会儿早上下的Super Mario(主要是早上刷了一 ...

  3. EditPlus 1:更改默认编码方式

    打开软件点击上面的菜单栏Tools(工具),再找到Configure User Tools(用户配置工具)点击,再找到左边栏File点击,这个时候可以看到右边栏的Default encoding点击可 ...

  4. php解析 html类库 simple_html_dom

    如果从字符串加载html文档,需要先从网络上下载.建议使用cURL来抓取html文档并加载DOM中. 查找html元素 可以使用find函数来查找html文档中的元素.返回的结果是一个包含了对象的数组 ...

  5. Spring Boot (22) Spring Security

    除了使用拦截器.过滤器实现对没有权限访问的页面跳转到登陆页外,还可以通过框架实现:Spring Security. 使用Spring Security 完成登陆验证: 1.pom.xml添加依赖 &l ...

  6. 表单校验插件(bootstrap-validator)

    表单校验插件(bootstrap-validator) 参考文档 http://blog.csdn.net/nazhidao/article/details/51542508 http://blog. ...

  7. 【Oracle】数据迁移工具(2):Data Dump

    Data Dump 使用命令行IMPDP/EXPDP实现导入导出表.schema.表空间及数据库.IMPDP/EXPDP命令行中可以加入以下选项,来实现更细粒度的导入导出. IMPDP/EXPDP和I ...

  8. 使用Ajax验证用户名

    Ajax是一项很重要的技术,下面简要举个例子,来解释如何使用Ajax.步骤如下:使用Ajax验证用户名使用文本框的onBlur事件 使用Ajax技术实现异步交互创建XMLHttpRequest对象通过 ...

  9. spring中的prop、set、list、map

    props.set.list.map这些事spring配置文件中很常见的标签,下面说下各自的适用场合. props:用于键值对,建和值都为string类型. <property name=&qu ...

  10. (转)基于Metronic的Bootstrap开发框架经验总结(1)-框架总览及菜单模块的处理

    http://www.cnblogs.com/wuhuacong/p/4757984.html 最近一直很多事情,博客停下来好久没写了,整理下思路,把最近研究的基于Metronic的Bootstrap ...