Codeforces Round #198 (Div. 2)C,D题解
接着是C,D的题解
C. Tourist Problem
Iahub is a big fan of tourists. He wants to become a tourist himself, so he planned a trip. There are n destinations on a straight road that Iahub wants to visit. Iahub starts the excursion from kilometer 0. The n destinations are described by a non-negative integers sequence a1, a2, ..., an. The number ak represents that the kth destination is at distance ak kilometers from the starting point. No two destinations are located in the same place.
Iahub wants to visit each destination only once. Note that, crossing through a destination is not considered visiting, unless Iahub explicitly wants to visit it at that point. Also, after Iahub visits his last destination, he doesn't come back to kilometer 0, as he stops his trip at the last destination.
The distance between destination located at kilometer x and next destination, located at kilometer y, is |x - y| kilometers. We call a "route" an order of visiting the destinations. Iahub can visit destinations in any order he wants, as long as he visits all n destinations and he doesn't visit a destination more than once.
Iahub starts writing out on a paper all possible routes and for each of them, he notes the total distance he would walk. He's interested in the average number of kilometers he would walk by choosing a route. As he got bored of writing out all the routes, he asks you to help him.
3
2 3 5
22 3
Consider 6 possible routes:
- [2, 3, 5]: total distance traveled: |2 – 0| + |3 – 2| + |5 – 3| = 5;
- [2, 5, 3]: |2 – 0| + |5 – 2| + |3 – 5| = 7;
- [3, 2, 5]: |3 – 0| + |2 – 3| + |5 – 2| = 7;
- [3, 5, 2]: |3 – 0| + |5 – 3| + |2 – 5| = 8;
- [5, 2, 3]: |5 – 0| + |2 – 5| + |3 – 2| = 9;
- [5, 3, 2]: |5 – 0| + |3 – 5| + |2 – 3| = 8.
The average travel distance is
=
=
.
一句话题意:(呃呃好像有点麻烦)
给定n个数,以样例来看,求出所有的全排列,然后在序列前面加一个0,
再求出序列中每个相邻的数的差值的绝对值之和(大概根据样例意会一下)
然后做法的话,我选择了直接推公式
首先n个数的全排列一共有n!种
如果我们抛去第一个数和0的差值,只计算后面的值
就比如 0 2 3 5, 只计算|3 – 2| + |5 – 3| = 3
那么每一种排列一共有n-1个间隔,那么总间隔数就是n!*(n-1)
其次这n个数一共可以组成n*(n-1)/2种不同的间隔
因此每一种不同的间隔一共会有n!*(n-1)/n/(n-1)*2=(n-1)!*2种
最后我们在加上每个数和0的差值,每个差值的个数为n!/n=n-1
我们用2 3 5来举例
[2, 3, 5]: |2 – 0| + |3 – 2| + |5 – 3|
[2, 5, 3]: |2 – 0| + |5 – 2| + |3 – 5|
[3, 2, 5]: |3 – 0| + |2 – 3| + |5 – 2|
[3, 5, 2]: |3 – 0| + |5 – 3| + |2 – 5|
[5, 2, 3]: |5 – 0| + |2 – 5| + |3 – 2|
[5, 3, 2]: |5 – 0| + |3 – 5| + |2 – 3|
首先不同的间隔为(2,3),(2,5),(3,5),每种间隔一共有(n-1)!*2=4种
然后和0之间的间隔(0,2),(0,3),(0,5),一共有n-1=2种
因此将所有的间隔和相加就行了
***另外你需要用O(a[i])的复杂度而不是O(n^2)的
#include<bits/stdc++.h>
#define ll long long
using namespace std;
#define N 10000010
ll a[N],sum=,s=,ans=,x; int n;
bool bo[N];
int main(){
scanf("%d",&n);
memset(a,,sizeof(a));
memset(bo,,sizeof(bo));
for(int i=;i<=n;++i)
scanf("%lld",&x),s+=x,a[x+]++,bo[x]=;
for (int i=;i<=N;++i){
a[i]+=a[i-];
if (bo[i]) ans+=a[i]*i-sum+abs(i*(n-a[i])-(s-sum)),sum+=i;
}
ll x=ans+s,y=n,gcd=__gcd(x,y);
x/=gcd; y/=gcd;
printf("%lld %lld",x,y);
}
D. Bubble Sort Graph
Iahub recently has learned Bubble Sort, an algorithm that is used to sort a permutation with n elements a1, a2, ..., an in ascending order. He is bored of this so simple algorithm, so he invents his own graph. The graph (let's call it G) initially has n vertices and 0 edges. During Bubble Sort execution, edges appear as described in the following algorithm (pseudocode).
procedure bubbleSortGraph()
build a graph G with n vertices and 0 edges
repeat
swapped = false
for i = 1 to n - 1 inclusive do:
if a[i] > a[i + 1] then
add an undirected edge in G between a[i] and a[i + 1]
swap( a[i], a[i + 1] )
swapped = true
end if
end for
until not swapped
/* repeat the algorithm as long as swapped value is true. */
end procedure
For a graph, an independent set is a set of vertices in a graph, no two of which are adjacent (so there are no edges between vertices of an independent set). A maximum independent set is an independent set which has maximum cardinality. Given the permutation, find the size of the maximum independent set of graph G, if we use such permutation as the premutation a in procedure bubbleSortGraph.
3
3 1 2
2
Consider the first example. Bubble sort swaps elements 3 and 1. We add edge (1, 3). Permutation is now [1, 3, 2]. Then bubble sort swaps elements 3 and 2. We add edge (2, 3). Permutation is now sorted. We have a graph with 3 vertices and 2 edges (1, 3) and (2, 3). Its maximal independent set is [1, 2].
一句话题意:O(nlogn)求出最长不下降子序列
下面我们来解释为什么是最长不下降子序列
它所给的这段程序,大意是将将所有i<j,a[i]>a[j]中的i和j连上一条边,那么我们想如果没有连上的
是不是就是i<j,a[i]<=a[j]的所有序号,那么这不就是裸的最长严格不下降子序列,
***因为n为1e5,所以你得用O(nlogn)来处理,我是用树状数组来维护
简单的讲一下,就是从前往后add(a[i],f[i]),那么ask时就是求从1到a[i]的前缀和,
因为1到a[i]内的数都是比a[i]小的QAQ
#include<bits/stdc++.h>
using namespace std;
int ans,a[],c[],n,t;
void add(int pos,int x){
while (pos<=n)
c[pos]=max(c[pos],x),pos+=pos&-pos;
} int ask(int pos){
int res=;
while (pos)
res=max(res,c[pos]),pos-=pos&-pos;
return res;
} int main(){
scanf("%d",&n);
for (int i=;i<=n;++i){
scanf("%d",&a[i]); t=ask(a[i]-)+;
ans=max(ans,t); add(a[i],t);
}
printf("%d",ans);
}
Codeforces Round #198 (Div. 2)C,D题解的更多相关文章
- Codeforces Round #198 (Div. 2)A,B题解
Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...
- Codeforces Round #612 (Div. 2) 前四题题解
这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...
- Codeforces Round #672 (Div. 2) A - C1题解
[Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...
- Codeforces Round #198 (Div. 2)E题解
E. Iahub and Permutations Iahub is so happy about inventing bubble sort graphs that he's staying all ...
- Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理
题目链接:http://codeforces.com/contest/340/problem/E E. Iahub and Permutations time limit per test 1 sec ...
- Codeforces Round #614 (Div. 2) A-E简要题解
链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...
- Codeforces Round #610 (Div. 2) A-E简要题解
contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...
- Codeforces Round #611 (Div. 3) A-F简要题解
contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...
- Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*
D. Iahub and Xors Iahub does not like background stories, so he'll tell you exactly what this prob ...
随机推荐
- Percona Xtrabackup对数据库进行部分备份
Xtrabackup也可以实现部分备份,即只备份某个或某些指定的数据库或某数据库中的某个或某些表.但要使用此功能,必须启用innodb_file_per_table选项,即每张表保存为一个独立的文件. ...
- NSURLCredential 代表认证结果证书?
NSURLCredential 代表认证结果证书?
- sql 导入excel 遇到问题
ALTER TABLE tab1 add id int identity primary key (注意:必须加identity,否则添加会失败) //导入excel时候 先把主键去掉 变为可为空,之 ...
- .NET 人工智能相关资料整理
机器学习组件:https://www.cnblogs.com/asxinyu/p/dotnet_Opensource_project_AccordNET.html ML.NET: ...
- day004 与用户交互、格式化输出、基本运算符
目录 今天Python所学习的知识如下:①与用户的交互.格式化输出.基本运算符.以下整理汇总下所学习的知识点. 与用户的交互 input 注意事项: input函数接受的都是字符串 python2中的 ...
- bos开发时,测试卡在登录界面解决
在BOS工作空间工程路径下新建sp文件夹,如在E:\bosworkspace8.2\Project_0\lib 新建sp文件夹E:\bosworkspace8.2\Project_0\lib\sp.然 ...
- Lua的五种变量类型、局部变量、全局变量、lua运算符、流程控制if语句_学习笔记02
Lua的五种变量类型.局部变量.全局变量 .lua运算符 .流程控制if语句 Lua代码的注释方式: --当行注释 --[[ 多行注释 ]]-- Lua的5种变量类型: 1.null 表示 ...
- 接口测试与Postman
阅读目录 1.接口测试简介 1.1 什么是接口测试 1.2 接口测试的必要性 1.3 接口测试流程 1.4 接口文档 1.5 接口测试用例设计 1.6 接口测试用例模板 2.Postman 2.1 ...
- encodeURI和encodeURIComponent的区别?
encodeURI方法不会对下列字符编码 ASCII字母.数字.~!@#$&*()=:/,;?+' encodeURIComponent方法不会对下列字符编码 ASCII字母.数字.~!*() ...
- react-native页面间传递数据的几种方式
1. 利用react-native 事件DeviceEventEmitter 监听广播 应用场景: - 表单提交页面, A页面跳转到B页面选人, 然后返回A页面, 需要将B页面选择的数据传回A页面. ...