The Basics of Numpy
在python语言中,Tensorflow中的tensor返回的是numpy ndarray对象。
Numpy的主要对象是齐次多维数组,即一个元素表(通常是数字),所有的元素具有相同类型,可以通过有序整数列表元组tuple访问其元素。In Numpy, dimensions are called axes. The number of axes is rank.
Numpy的数组类为ndarray,它还有一个名气甚大的别名array。需要注意的是:numpy.array与python标准库中的array.array并不完全相同,后者仅仅处理一维数组而且提供的函数功能较少。
比较重要的一些ndarray数组的属性:
ndarray.ndim: the number of axes (dimensions) of the array. In the Python world, the number of dimensions is referred to as rank.ndarray.shape:the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be(n,m). The length of the shape tuple is therefore the rank, or number of dimensions, ndim.ndarray.size:the total number of elements of the array. This is equal to the product of the elements of shape.ndarray.dtype:an object describing the type of the elements in the array. One can create or specify dtype’s using standard Python types. Additionally NumPy provides types of its own.numpy.int32,numpy.int16, andnumpy.float64are some examples.ndarray.itemsize:the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.ndarray.data:the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we will access the elements in an array using indexing facilities.
An Example
import numpy as np
a = np.arange(15).reshape(3, 5)
print a
print a.ndim
print a.shape
print a.size
print a.dtype
print a.itemsize
# print
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
2
(3, 5)
15
int64
8
Array Creation:
>>> a = np.array(1,2,3,4) # WRONG
>>> a = np.array([1,2,3,4]) # RIGHT
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
Basic Operations
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
>>> A = np.array( [[1,1],
... [0,1]] )
>>> B = np.array( [[2,0],
... [3,4]] )
>>> A*B # elementwise product
array([[2, 0],
[0, 4]])
>>> A.dot(B) # matrix product
array([[5, 4],
[3, 4]])
>>> np.dot(A, B) # another matrix product
array([[5, 4],
[3, 4]])
>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022 , 3.72032449, 3.00011437],
[ 3.30233257, 3.14675589, 3.09233859]])
>>> a += b # b is not automatically converted to integer type
# Traceback (most recent call last):
# ...
# TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
更多内容请阅读:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
The Basics of Numpy的更多相关文章
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- Python Basics with numpy (optional)
Python Basics with Numpy (optional assignment) Welcome to your first assignment. This exercise gives ...
- Python Basics with Numpy
Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if yo ...
- PyTorch(一)Basics
PyTorch Basics import torch import torchvision import torch.nn as nn import numpy as np import torch ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 【Python】numpy 数组拼接、分割
摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...
- numpy基本用法
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...
- numpy快速指南
Quickstart tutorial 引用https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Prerequisites Before ...
随机推荐
- Win8下建立shortcut到開始界面
在win8前建立開始菜单都非常easy,但到win8就有点不一样了.它的開始菜单是metro风格的.以下我们来看下详细的实现代码.有兴趣的朋友能够自己測试下,它的作用是设置shortcut到metro ...
- Iterator - 迭代器模式
定义 提供一个方法顺序訪问一个聚合对象中个各个元素,而又不须要暴露该对象的内部结构. 案例 一个聚合对象.如一个列表List.应该提供一种方法来让别人能够訪问它的元素.而又不用暴露内部结构.迭代器模式 ...
- UIViewController生命周期控制
UIViewController生命周期控制 UIViewController介绍 官方的介绍例如以下 The UIViewController class provides the fundamen ...
- Python去除多余空格
今天做爬虫时.发现结果中好多多余的空格.然后有强迫症的我当然不会放过 " xyz ".strip() # returns "xyz" " xyz &q ...
- Selenium API 介绍
Selenium API 介绍 我们先前学习过元素定位,大家不知道学习得怎么样了,当你学会元素定位之后就能够跟着我的脚步学习本节Selenium 经常使用的API 介绍 Seleium 为什么能模拟人 ...
- Mysql数据库性能
Mysql数据库设计规范 https://www.cnblogs.com/Luke-Me/p/8994432.html 我们在项目一开始的设计中,就要忙着考虑数据库的设计,表.字段.索引.sql等等, ...
- JavaScript:DOM对象
ylbtech-JavaScript:DOM对象 1. HTML DOM Document 对象返回顶部 1. HTML DOM Document 对象 HTML DOM 节点 在 HTML DOM ...
- BZOJ 3065 替罪羊树+动态开节点线段树
思路: RT 可以看VFK的题解 我写了半天拍了半天... 不过是$nlog^2n$的 要写垃圾回收的 线段树 如果某个节点的sum是0 也可以free掉 //By SiriusRen #inclu ...
- Sybase 动态改变存储过程里查询的数据库
declare @sql varchar(500) select @sql='select * from '+@dbName+'..tableName' --此句用于执行拼接好的SQL语句 exec( ...
- js判断浏览器是android还是ios还是微信浏览器
第一种方法<script type="text/javascript"> //判断访问终端 var browser={ versions:function(){ var ...