The Basics of Numpy
在python语言中,Tensorflow中的tensor返回的是numpy ndarray对象。
Numpy的主要对象是齐次多维数组,即一个元素表(通常是数字),所有的元素具有相同类型,可以通过有序整数列表元组tuple访问其元素。In Numpy, dimensions are called axes. The number of axes is rank.
Numpy的数组类为ndarray,它还有一个名气甚大的别名array。需要注意的是:numpy.array与python标准库中的array.array并不完全相同,后者仅仅处理一维数组而且提供的函数功能较少。
比较重要的一些ndarray数组的属性:
ndarray.ndim: the number of axes (dimensions) of the array. In the Python world, the number of dimensions is referred to as rank.ndarray.shape:the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be(n,m). The length of the shape tuple is therefore the rank, or number of dimensions, ndim.ndarray.size:the total number of elements of the array. This is equal to the product of the elements of shape.ndarray.dtype:an object describing the type of the elements in the array. One can create or specify dtype’s using standard Python types. Additionally NumPy provides types of its own.numpy.int32,numpy.int16, andnumpy.float64are some examples.ndarray.itemsize:the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.ndarray.data:the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we will access the elements in an array using indexing facilities.
An Example
import numpy as np
a = np.arange(15).reshape(3, 5)
print a
print a.ndim
print a.shape
print a.size
print a.dtype
print a.itemsize
# print
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
2
(3, 5)
15
int64
8
Array Creation:
>>> a = np.array(1,2,3,4) # WRONG
>>> a = np.array([1,2,3,4]) # RIGHT
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
Basic Operations
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
>>> A = np.array( [[1,1],
... [0,1]] )
>>> B = np.array( [[2,0],
... [3,4]] )
>>> A*B # elementwise product
array([[2, 0],
[0, 4]])
>>> A.dot(B) # matrix product
array([[5, 4],
[3, 4]])
>>> np.dot(A, B) # another matrix product
array([[5, 4],
[3, 4]])
>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022 , 3.72032449, 3.00011437],
[ 3.30233257, 3.14675589, 3.09233859]])
>>> a += b # b is not automatically converted to integer type
# Traceback (most recent call last):
# ...
# TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
更多内容请阅读:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
The Basics of Numpy的更多相关文章
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- Python Basics with numpy (optional)
Python Basics with Numpy (optional assignment) Welcome to your first assignment. This exercise gives ...
- Python Basics with Numpy
Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if yo ...
- PyTorch(一)Basics
PyTorch Basics import torch import torchvision import torch.nn as nn import numpy as np import torch ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 【Python】numpy 数组拼接、分割
摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...
- numpy基本用法
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...
- numpy快速指南
Quickstart tutorial 引用https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Prerequisites Before ...
随机推荐
- Anaconda安装第三方模块
Anaconda安装第三方模块 普通安装: 进去\Anaconda\Scripts目录,conda install 模块名 源码安装: 进去第三方模块目录,python install setup.p ...
- jmeter函数和变量
函数和变量广泛的应用在JMeter的传参过程,其中函数可以被认为是某种特殊的变量,它们可以被采样器或者其他测试元件所引用. 常用函数 1.__RamdomString() / __Ramdom() 获 ...
- UVa 572 - Oil Deposits (简单dfs)
Description GeoSurvComp地质调查公司负责探測地下石油储藏. GeoSurvComp如今在一块矩形区域探測石油.并把这个大区域分成了非常多小块.他们通过专业设备.来分析每一个小块中 ...
- cdev_init和register_chrdev区别
--- 01:include/linux/fs.h static inline int register_chrdev(unsigned int major, const char *name, co ...
- 字符串函数---strcmp()与strncmp()详解及实现【转】
本文转载自:http://blog.csdn.net/lanzhihui_10086/article/details/39829623 一.strcmp()与strncmp() strcmp():st ...
- Reset and Clear Recent Items and Frequent Places in Windows 10
https://www.tenforums.com/tutorials/3476-reset-clear-recent-items-frequent-places-windows-10-a.html ...
- C语言 - typedef struct 与struct
c语言中可以选择的数据类型太少了. Java中有一些高级的数据结构. 结构中能够存放基本的数据类型以及其他的结构. 结构定义,一般放在程序的开头部分. 一般放在include之后. #include ...
- HTML不熟悉方法总结
1. onblur 属性在元素失去焦点时触发. 2. onfocus 属性在元素获得焦点时触发. 3.addEventlistener 事件监听 4.focus() 方法用于给予该元素焦点.这样用 ...
- springmvc-servlet.xml(springmvc-servlet.xml 配置 增强配置)
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- hihoCoder挑战赛32
Rikka with Sequence V 构造 #pragma comment(linker, "/STACK:102400000,102400000") #include< ...