Multiplying both sides of this result by wT and adding w0, and making use of y(x)=wTx+w0 and  y(xΓ)=wTxΓ+w0=0, we have r=y(x)/||w||.

  The idea proposed by Fisher is to maximize a function that will give a large separation between the projected class means while also giving a small variance within each class, thereby minimizing the class overlap.

Fisher 线性判别的更多相关文章

  1. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  2. 【线性判别】Fisher线性判别(转)

    今天读paper遇到了Fisher线性判别的变体, 所以来学习一下, 所以到时候一定要把PRMl刷一遍呀 以下两篇论文一起阅读比较好: 论文1: https://blog.csdn.net/Rainb ...

  3. 线性判别函数-Fisher 线性判别

    这是我在上模式识别课程时的内容,也有参考这里. 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权. 设样 ...

  4. fisher线性判别

    fisher 判决方式是监督学习,在新样本加入之前,已经有了原样本. 原样本是训练集,训练的目的是要分类,也就是要找到分类线.一刀砍成两半! 当样本集确定的时候,分类的关键就在于如何砍下这一刀! 若以 ...

  5. Fisher线性判别分析

    Fisher线性判别分析 1.概述 在使用统计方法处理模式识别问题时,往往是在低维空间展开研究,然而实际中数据往往是高维的,基于统计的方法往往很难求解,因此降维成了解决问题的突破口. 假设数据存在于d ...

  6. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...

  7. LDA(线性判别分类器)学习笔记

    Linear Discriminant Analysis(线性判别分类器)是对费舍尔的线性鉴别方法(FLD)的归纳,属于监督学习的方法. LDA的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达 ...

  8. LDA-作为线性判别 降维 推导

    LDA 降维原理 前面对 LDA 作为作为分类器 有详细推导, 其核心就是 贝叶斯公式, 已知全概率, 求(条件概率)最大先验概率, 类似的问题. 而 LDA 如果作为 降维 的原理是: a. 将带上 ...

  9. 【模式识别与机器学习】——3.5Fisher线性判别

    ---恢复内容开始--- 出发点 应用统计方法解决模式识别问题时,一再碰到的问题之一就是维数问题. 在低维空间里解析上或计算上行得通的方法,在高维空间里往往行不通. 因此,降低维数有时就会成为处理实际 ...

随机推荐

  1. jQuery——事件操作

    事件绑定 1.简单事件绑定 $("button").click(function () {})//可重复绑定,不会被层叠 2.bind():不推荐使用 $("button ...

  2. 使用doxmate生成文档

    主页:http://html5ify.com/doxmate/ 在windows下面使用doxmate 1. 下载node.js(msi)并安装 http://www.nodejs.org/downl ...

  3. ajax不执行success的问题

    有时候经常会遇到ajax请求后台,然后后台返回数据后,不触发ajax的success函数的问题,归根到底,这与ajax的参数设置dataType和后台的返回值的类型有关,现总结如下: 一.后台返回值的 ...

  4. jstree CHECKBOX PLUGIN

    The checkbox plugin makes multiselection possible using three-state checkboxes. Configuration overri ...

  5. LeetCode--不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ).机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”).现在考虑网格中 ...

  6. Codeforces Round #469 Div. 2题解

    A. Left-handers, Right-handers and Ambidexters time limit per test 1 second memory limit per test 25 ...

  7. Shell脚本备份文件

    使用crontab 定时备份文件 1. 编辑crontab规则 2. 编写shell脚本 cp -R "/data/www/code" "/home/backup/cod ...

  8. 50.percentiles百分比算法以及网站延时统计

    主要知识点 percentiles的用法     现有一个需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99 tp50:50%的请求的耗时最长在多长时间 tp90 ...

  9. PHP面试:说下什么是堆和堆排序?

    堆是什么? 堆是基于树抽象数据类型的一种特殊的数据结构,用于许多算法和数据结构中.一个常见的例子就是优先队列,还有排序算法之一的堆排序.这篇文章我们将讨论堆的属性.不同类型的堆以及堆的常见操作.另外我 ...

  10. PAT 1039. Course List for Student

    Zhejiang University has 40000 students and provides 2500 courses. Now given the student name lists o ...