time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

It’s that time of the year, Felicity is around the corner and you can see people celebrating all around the Himalayan region. The Himalayan region has n gyms. The i-th gym has gi Pokemon in it. There are m distinct Pokemon types in the Himalayan region numbered from 1 to m. There is a special evolution camp set up in the fest which claims to evolve any Pokemon. The type of a Pokemon could change after evolving, subject to the constraint that if two Pokemon have the same type before evolving, they will have the same type after evolving. Also, if two Pokemon have different types before evolving, they will have different types after evolving. It is also possible that a Pokemon has the same type before and after evolving.

Formally, an evolution plan is a permutation f of {1, 2, …, m}, such that f(x) = y means that a Pokemon of type x evolves into a Pokemon of type y.

The gym leaders are intrigued by the special evolution camp and all of them plan to evolve their Pokemons. The protocol of the mountain states that in each gym, for every type of Pokemon, the number of Pokemon of that type before evolving any Pokemon should be equal the number of Pokemon of that type after evolving all the Pokemons according to the evolution plan. They now want to find out how many distinct evolution plans exist which satisfy the protocol.

Two evolution plans f1 and f2 are distinct, if they have at least one Pokemon type evolving into a different Pokemon type in the two plans, i. e. there exists an i such that f1(i) ≠ f2(i).

Your task is to find how many distinct evolution plans are possible such that if all Pokemon in all the gyms are evolved, the number of Pokemon of each type in each of the gyms remains the same. As the answer can be large, output it modulo 109 + 7.

Input

The first line contains two integers n and m (1 ≤ n ≤ 105, 1 ≤ m ≤ 106) — the number of gyms and the number of Pokemon types.

The next n lines contain the description of Pokemons in the gyms. The i-th of these lines begins with the integer gi (1 ≤ gi ≤ 105) — the number of Pokemon in the i-th gym. After that gi integers follow, denoting types of the Pokemons in the i-th gym. Each of these integers is between 1 and m.

The total number of Pokemons (the sum of all gi) does not exceed 5·105.

Output

Output the number of valid evolution plans modulo 109 + 7.

Examples

input

2 3

2 1 2

2 2 3

output

1

input

1 3

3 1 2 3

output

6

input

2 4

2 1 2

3 2 3 4

output

2

input

2 2

3 2 2 1

2 1 2

output

1

input

3 7

2 1 2

2 3 4

3 5 6 7

output

24

Note

In the first case, the only possible evolution plan is:

In the second case, any permutation of (1,  2,  3) is valid.

In the third case, there are two possible plans:

In the fourth case, the only possible evolution plan is:

【题目链接】:http://codeforces.com/contest/757/problem/C

【题解】



记录最后每种动物在哪些gym里面出现过;

如果2动物在3号gym里面出现两次,在4号gym里面出现3次;

定义

    vector <int> a[MAXM];

则a[2]={3,3,4,4,4};

如果3号动物和2号之间能互相进化

则必有a[2]=a[3]

即2号动物在哪个gym里面出现过,3号动物也要在那个gym里面出现;

且要求出现的次数相同;(所以a[x]里面可能有重复的数字表示它在这个

gym里面出现多次);

(如果符合这样的要求,则2和3能够转化,且也这有这样才能满足转化过后2和3在各个gym里面出现的次数都不变);

然后用一个sort把a[1..m]都排序一下;

a里面的内容也要排序;

这样相同的a就会在靠在一起;

那些相同的a能够互相转化;

每个相同的a构成的若干个集合设为Si

则每个集合的方案数为(Si)!

答案就是

∏((Si)!)

预处理出1..MAXM的阶乘;

那些没有出现的动物;显然可以任意转化;

所以也是N!



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int MAXN = 110;
const int MAXM = 1e6+100;
const LL MOD = 1e9+7; int n,m;
vector <int> a[MAXM];
LL jc[MAXM]; int main()
{
//freopen("F:\\rush.txt","r",stdin);
jc[0] = 1;
for (LL i = 1;i <= 1000000;i++)
jc[i] = (jc[i-1]*i)%MOD;
rei(n);rei(m);
rep1(i,1,n)
{
int num;
rei(num);
rep1(j,1,num)
{
int x;
rei(x);
a[x].pb(i);
}
}
sort(a+1,a+1+m);
LL ans = 1;
rep1(i,1,m)
{
int j = i + 1;
while (j<=m && a[j]==a[i]) j++;
int len = j-i;
ans = (ans * jc[len])%MOD;
i = j-1;
}
cout << ans << endl;
return 0;
}

【codeforces 757C】Felicity is Coming!的更多相关文章

  1. 【codeforces 757D】Felicity's Big Secret Revealed

    [题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...

  2. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  3. 【codeforces 707E】Garlands

    [题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...

  4. 【codeforces 707C】Pythagorean Triples

    [题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...

  5. 【codeforces 709D】Recover the String

    [题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...

  6. 【codeforces 709B】Checkpoints

    [题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...

  7. 【codeforces 709C】Letters Cyclic Shift

    [题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...

  8. 【Codeforces 429D】 Tricky Function

    [题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...

  9. 【Codeforces 670C】 Cinema

    [题目链接] http://codeforces.com/contest/670/problem/C [算法] 离散化 [代码] #include<bits/stdc++.h> using ...

随机推荐

  1. leaf cell

    leaf cell是否可以理解为设计中与或非门等这些基本的单元?

  2. 四、Docker+Tomcat

    原文:四.Docker+Tomcat 一.下载Tomcat镜像 具体可以search 搜索tomcat 相关镜像 docker pull sonodar/jdk8-tomcat8 二.创建容器 doc ...

  3. Keil 编译环境之在线仿真调试问题

    一.问题现象: 这几天刚开始上手STM32,使用Keil 环境进行编程,然后使用ULINK2进行在线仿真,在按键处理函数程序中设置断点,却发现按了按键程序没有停在设置的断点,程序正常运行,如下图所示, ...

  4. 洛谷 P1327 数列排序

    P1327 数列排序 题目描述 给定一个数列{an},这个数列满足ai≠aj(i≠j),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? 输入输出格式 输入格式: ...

  5. [D3JS] Add more map layer and color

    import React, {Component} from 'react'; import * as d3 from 'd3'; import 'd3-geo'; import * as topoj ...

  6. activity-栈相关属性

    1.启动任务栈 第一种,动作设置为“android.intent.action.MAIN”,类别设置为“android.intent.category.LAUNCHER”,可以使这个ACT(activ ...

  7. Flume Channels官网剖析(博主推荐)

    不多说,直接上干货! Flume Sources官网剖析(博主推荐) 一切来源于flume官网 http://flume.apache.org/FlumeUserGuide.html Flume Ch ...

  8. 逆波兰法(计算器)程序<无括号版>

    涉及队列.栈的运用. Java中队列可以用: Queue<String> q = new LinkedList(); 来声明,其主要的方法有: poll(),peak(),offer(), ...

  9. Java BlockingQueue Example(如何使用阻塞队列实现生产者-消费者问题)

    Today we will look into Java BlockingQueue. java.util.concurrent.BlockingQueue is a java Queue that ...

  10. STL MAP取消排序

    class MyLess{public: bool operator()(const CString str1,const CString str2)const { return TRUE; }}; ...