一、Lucene介绍及应用

Apache Lucene是当下最为流行的开源全文检索工具包,基于JAVA语言编写。

目前基于此工具包开源的搜索引擎,成熟且广为人知的有Solr和Elasticsearch。2010年后Lucene和Solr两个项目由同一个Apache软件基金会的开发团队制作,所以通常我们看到的版本都是同步的。二者的区别是Lucene是工具包,而Solr是基于Lucene制作的企业级搜索应用。另外,我们常用的Eclipse,帮助系统的搜索功能也是基于Lucene实现的。

二、Lucene的两项工作

在我们的生活物品中,汉语字典与全文索引是很相似的。我们拿拼音查字法举例,首先我们通过拼音找到我们要查字的页数,然后翻到该页,阅读这个字的详细解释。

在上面的例子中,我们提到了两个要素:一个是字典,另一个是查字的过程。对应到Lucene的功能上,一个是我们要建立一个字典,这个过程叫做建立索引,另一个是根据搜索词基于索引进行查询。

2.1 建立索引

1)文档的准备(Document)

文档就是指我们要去搜索的原文。

2)分词组件(Tokenizer)

将第一步的文档进行词语切割,去除标点,去除无用词,比如“是”,“的”等。常用的开源中文分词组件有MMSEG4J、IKAnalyzer等。切割后的词语我们称为词元(Token)。

3)语言处理(Linguistic Processor)

将上一步的获得的词元进行处理,比如英文的大写转小写,复数变单数,过去时分词转原形等。此时得到的结果,被称作词(Term)

4)索引组件

索引组件将上步得到的词,生成索引和词典,存储到磁盘上。索引组件先将Term变成字典,然后对字典进行排序,排序后对相同的词进行合并,形成倒排列表。每个词在列表中存储了对应的文档Id(Document Frequency)以及这个词在这个文档中出现了几次(Term Frequency)。

2.2 搜索

1)输入查询词

2)词法分析及语言处理

对输入的词进行拆分,关键字识别(AND,NOT)等。对拆分的词元进行语言处理,与建立字典时语言处理的过程相同。由关键字与处理后的词生成语法树。

3)搜索索引,获得符合语法树的文档

如A and B not C形成的语法树,则会搜索包含A B C的文档列表,然后用A和B的文档列表做交集,结果集与C做差集,得到的结果,就是符合搜索条件的文档列表

4)根据相关性,对搜索结果排序

通过向量空间模型的算法,得到结果的相关性。比较简单的实现描述如下:在建立索引的时候,我们得到了Document Frequency和Term Frequency,Term Frequency越高,说明文档的相关性越高;Document Frequency越高,说明相关性越弱。这个算法可以自己进行实现。

5)根据上面的排序结果,返回文档。

三、索引结构

Lucene的索引结构是有层次结构的。我们以下图为例

3.1 索引(Index)

如果拿数据库做类比,索引类似于数据库的表。

在Lucene中一个索引是放在一个文件夹中的。所以可以理解索引为整个文件夹的内容。

3.2 段(Segment)

如果拿数据库做类比,段类似于表的分区。

索引下面引入了Segment 的概念,一个索引下可以多个段。当flush或者commit时生成段文件。截图中有0,1两个段。segments.gen和segments_5是段的元数据文件,它们保存了段的属性信息。其他的文件对应的就是各段的文件,稍后会详细说明各文件的用处。

索引的写入是顺序的,只能被追加,不能被修改。当索引要删除时,在.del文件中写入对应的docId。查询的时候会过滤到此docId。另外索引的修改,是对Document进行删除后做的追加。这种设计保证了高吞吐量。

分段的设计能保证查询的高效,当段太大时,查询会产生很大的IO消耗。段太小,则需要查询的段太多。所以lucene对段进行了合并,另外删除的数据也是在合并过程中过滤掉的。4.0之前的默认的合并策略为LogMergePolicy,这个策略会合并小于指定值的相邻段,如果两个相邻段,一个大小为1G,一个大小为1k,则会重写1G的文件会占用很大资源。4.0之后默认策略改为了TieredMergePolicy,这个策略会先按分段大小进行排序,对段进行删除比计算,优先合并小的分段。当系统闲暇的时候,才对大分段进行合并。

3.3 文档(Document)

如果拿数据库做类比,文档类似于数据的一行。

Document是索引的基本单位。一个段可以有多个Document

3.4 域(Field)

如果拿数据库做类比,域相当于表的字段。

Doument里可以有多个Field。Lucene提供多种不同类型的Field,例如StringField、TextField、LongFiled或NumericDocValuesField等。

3.5 词(Term)

Term是索引的最小单位。Term是由Field经过Analyzer(分词)产生。

四、段的文件说明

第三章节详细描述了段的设计和合并策略,以下详细讲解一些段文件的内容。

segments_N保存了此索引包含多少个段,每个段包含多少篇文档。

*.fnm

保存了此段包含了多少个域,每个域的名称及索引方式。

*.fdx,*.fdt

保存了此段包含的所有文档,每篇文档包含了多少域,每个域保存了那些信息。

*.tvx,*.tvd,*.tvf

保存了此段包含多少文档,每篇文档包含了多少域,每个域包含了多少词,每个词的字符串,位置等信息。

*.tis,*.tii

保存了词典(Term Dictionary),也即此段包含的所有的词按字典顺序的排序。

*.frq

保存了倒排表,也即包含每个词的文档ID列表。

*.prx

保存了倒排表中每个词在包含此词的文档中的位置

*.del

前面讲段的时候有提到,用来是存储删掉文档id的。

作者:田梁

来源:宜信技术学院

5分钟了解lucene全文索引的更多相关文章

  1. 全文索引-lucene,solr,nutch,hadoop之nutch与hadoop

    全文索引-lucene.solr.nutch,hadoop之lucene 全文索引-lucene.solr,nutch,hadoop之solr 我在去年的时候,就想把lucene,solr.nutch ...

  2. 深度解析 Lucene 轻量级全文索引实现原理

    一.Lucene简介 1.1 Lucene是什么? Lucene是Apache基金会jakarta项目组的一个子项目: Lucene是一个开放源码的全文检索引擎工具包,提供了完整的查询引擎和索引引擎, ...

  3. lucene全文检索---打酱油的日子

    检索内容,一般的程序员第一时间想到的是sql的like来做模糊查询,其实这样的搜索是比较耗时的.已经有lucene帮我们 封装好了,lucene采用的是分词检索等策略. 1.lucene中的类描述 I ...

  4. 全文索引之nutch与hadoop(转)

    原文:http://blog.csdn.net/chaofanwei/article/details/39476535 全文索引-lucene,solr,nutch,hadoop之lucene 全文索 ...

  5. Lucene:基于Java的全文检索引擎简介

    Lucene:基于Java的全文检索引擎简介 Lucene是一个基于Java的全文索引工具包. 基于Java的全文索引/检索引擎--Lucene Lucene不是一个完整的全文索引应用,而是是一个用J ...

  6. Lucene:基于Java的全文检索引擎简介 (zhuan)

    http://www.chedong.com/tech/lucene.html ********************************************** Lucene是一个基于Ja ...

  7. 整合hibernate的lucene大数据模糊查询

      大数据模糊查询lucene 对工作单使用 like模糊查询时,实际上 数据库内部索引无法使用 ,需要逐条比较查询内容,效率比较低在数据量很多情况下, 提供模糊查询性能,我们可以使用lucene全文 ...

  8. (转)ElasticSearch学习

    (二期)21.全文搜索引擎Elasticsearch [课程21]elasticsearch.xmind82.1KB [课程21]lucene.xmind0.8MB [课程21]基本用法....api ...

  9. (转)mblog解读(二)

    (二期)12.开源博客项目mblog解读(二) [课程12]freema...模板.xmind77.9KB [课程12]hibernat...arch.xmind0.1MB freemarker模板技 ...

随机推荐

  1. JVM系列(1)- JVM常见参数及堆内存分配

    常见参数配置 基于JDK1.6 -XX:+PrintGC 每次触发GC的时候打印相关日志 -XX:+UseSerialGC 串行回收模式 -XX:+PrintGCDetails 打印更详细的GC日志 ...

  2. 定时器任务django-crontab的使用【静态化高频率页面,增加用户体验】【系统的定时器,独立于项目执行】【刘新宇】

    页面静态化 思考: 网页的首页访问频繁,而且查询数据量大,其中还有大量的循环处理. 问题: 用户访问首页会耗费服务器大量的资源,并且响应数据的效率会大大降低. 解决: 页面静态化 1. 页面静态化介绍 ...

  3. HBuilderX使用Vant组件库

    HBuilderX使用Vant组件库 HBuilderX是一款由国人开发的开发工具,其官网称其为轻如编辑器.强如IDE的合体版本.但是官方的社区中关于Vant组件的安装大多都是针对微信小程序开发安装V ...

  4. Flutter学习笔记(20)--FloatingActionButton、PopupMenuButton、SimpleDialog、AlertDialog、SnackBar

    如需转载,请注明出处:Flutter学习笔记(20)--FloatingActionButton.PopupMenuButton.SimpleDialog.AlertDialog.SnackBar F ...

  5. Springboot源码分析之番外篇

    摘要: 大家都知道注解是实现了java.lang.annotation.Annotation接口,眼见为实,耳听为虚,有时候眼见也不一定是真实的. /** * The common interface ...

  6. Java函数式编程原理以及应用

    一. 函数式编程 Java8所有的新特性基本基于函数式编程的思想,函数式编程的带来,给Java注入了新鲜的活力. 下面来近距离观察一下函数式编程的几个特点: 函数可以作为变量.参数.返回值和数据类型. ...

  7. LInux系统@安装CentOS7虚拟机

    安装Centos7虚拟机 1.打开VMware,点击创建新的虚拟机(至关重要) 2.选择自定义配置,点击下一步 3.选择虚拟机硬件兼容性<Workstation 12.0>,点击下一步 4 ...

  8. vscode 代码补全工具之aiXcoder

    突然发现了一个好用的代码补全工具,与人工智能相关,具有自学习能力,据说用的越久补全效果越好,可以帮助我们节省掉好多敲代码的时间,所以这么好的工具当然要分享给大家了.废话不多说,直接上vscode的安装 ...

  9. Java多线程之线程的状态迁移

    Java多线程之线程的状态迁移 下图整理了线程的状态迁移.图中的线程状态(Thread.Stat 中定义的Enum 名)NEW.RUNNABLE .TERMINATED.WAITING.TIMED_W ...

  10. CentOS重置MySQL root密码的方法

    1.修改MySQL的登录设置: # vim /etc/my.cnf 在[mysqld]的段中加上一句:skip-grant-tables 例如: [mysqld] skip-grant-tables  ...