传送门

题意:上司和直接下属,不能同时去一个聚会,问可邀请到的人的快乐值最大是多少;

参考:https://www.luogu.org/blog/mak2333/solution-p1352

思路:

 

首先我们们分析一下这道题,对于每一个人,它所做的决定对上司和下属都有影响,我们可以只看一方,也就是上司对下属的影响,因为这样的影响是相互的。

状态如果为f[i]表示第i个人的位置能获得最大的幸福行吗?

由于我们的选择具有后效性,因为你去或不去对下属有影响,那显然不行。遇到这种情况我们该怎么办?

加一维

由于后效性实质上是我们对于状态的性质不够清楚,所以我们再加一维以实现就算你加还是不加我们都可以记录下来。所以状态其实是很好想的。想出状态后,容易推出方程为

dp[i][0]+=sum(max(dp[son][1],dp[son][0]));  //显然,你不去,那下属就可以想去就去。

dp[i][1]=sum(dp[son][0])+happy[i];  //显然你去了那下属就一定不能去。

由此我们就可以愉快的DFS了。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <list>
#include <iterator>
#include <cmath>
using namespace std; #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue #define Pll pair<ll,ll>
#define Pii pair<int,int> #define fi first
#define se second #define OKC ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 typedef long long ll;
typedef unsigned long long ull; /*-----------------show time----------------*/ const int maxn = ;
vector<int >mp[maxn];
int n;
int hp[maxn],dp[maxn][],fa[maxn]; void dfs(int u,int o)
{
for(int i=; i<mp[u].size(); i++)
{
int tmp = mp[u][i];
if(tmp==o)continue;
dfs(tmp,u);
dp[u][] = max(dp[tmp][]+dp[u][],dp[u][]);
dp[u][] += max(dp[tmp][],dp[tmp][]);
}
dp[u][] += hp[u];
}
int main(){
scanf("%d", &n);
for(int i = ; i<=n; i++)scanf("%d" , hp+i),fa[i] = i;
for(int i =; i<=n; i++)
{ int u,v;
scanf("%d%d", &u, & v);
if(u+v==)break;
mp[v].pb(u);
fa[u] = v;
}
int s = n;
while(s!=fa[s])
{
s = fa[s];
}
dfs(s,-);
printf("%d\n",max(dp[s][],dp[s][]));
return ;
}

DFS

参考中还提到,如果人数过多,或者是一条链的时候,可以用BFS+队列,拓扑排序优化。我感觉主要思路,就是把从子节点到父节点的路径找出来

洛谷P1352没有上司的舞会+树形二维DP的更多相关文章

  1. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  2. 洛谷 P1352 没有上司的舞会 树形DP板子

    luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...

  3. 洛谷 P1352 没有上司的舞会(树形 DP)

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  4. 洛谷 p1352 没有上司的舞会 题解

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  5. 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...

  6. 洛谷 P1352 没有上司的舞会【树形DP】(经典)

    <题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  7. 洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  8. 洛谷 P1352 没有上司的舞会

    树形动规入门题 先放题面 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都 ...

  9. 洛谷P1352 没有上司的舞会

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

随机推荐

  1. Redis的HelloWorld

    1.安装完成的Redis: linux安装的应用默认会在:usr/local/bin. 1.redis-benchmark:性能测试工具,是redis提供的一个高并发程序,可以在自己本机运行,看看自己 ...

  2. Spark Streaming自定义Receiver

    一 背景 Spark社区为Spark Streaming提供了很多数据源接口,但是有些比较偏的数据源没有覆盖,由于公司技术栈选择,用了阿里云的MQ服务ONS,要做实时需求,要自己编写Receiver ...

  3. bug探索常识

    1.什么是Bug探索测试? 探索测试是将测试设计和测试执行整合在一起,形成的一种测试方法. 2.探索性测试怎么做? 需要认真思考和分析结果,并且在探索测试的过程中做记录. 3.探索性测试的好处? 可以 ...

  4. 补充Java面试记录

    补充Java面试记录 背景:这两天面试遇到的部分问题都分散在了前面两篇文摘中,这里再做一些其他的记录,以备不时之需! 一.谈谈你对SpringBoot的理解? SpringBoot简介:SpringB ...

  5. Netty源码分析-- FastThreadLocal分析(十)

    上节讲过了ThreadLocal的源码,这一节我们来看下FastThreadLocal.这个我觉得要比ThreadLocal要简单,因为缺少了对于Entry的清理和整理工作,所以ThreadLocal ...

  6. Spring Cloud 相关资料链接

    Spring Cloud中文网:https://springcloud.cc/ Spring Cloud API:https://springcloud.cc/spring-cloud-dalston ...

  7. Vue系列:Websocket 使用配置

    WebSocket 是什么? WebSocket  是一种网络通信协议.而且是在 HTML5 才开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. 为什么需要 WebSocket ? 了解计算 ...

  8. 集成方法 Ensemble

    一.bagging 用于基础模型复杂.容易过拟合的情况,用来减小 variance(比如决策树).基础模型之间没有太多联系(相对于boosting),训练可以并行.但用 bagging 并不能有助于把 ...

  9. Docker 前沿概述

    目录 Docker 前沿概述 什么是Docker? Docker的基本概念 容器(Container) -- 镜像运行时的实体 镜像(Image) -- 一个特殊的文件系统 仓库(Repository ...

  10. win10 将硬盘工作模式由IDE调整到AHCI模式

    第1步:重启进入安全模式 1)点击“开始”按钮 进入设置 2)进入“更新和安全”,“恢复-高级启动”,点击“立即高级启动”, 依次选择“疑难解答”-“高级选项”-“启动设置”-点击“重启” 第2步:进 ...