题目描述

  在一个m*n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向左(以自己为视角)或者向下移动一格,直到到达棋盘的右下角。给定一个棋盘及其上面的礼物,请计算你最多能拿到多少价值的礼物?
  
  

  例如,在上面的棋盘中,如果沿着带下画线的数字的线路(1、12、5、7、7、16、5),那么我们能拿到最大价值为53的礼物。

[牛客网刷题地址]无

思路分析

  1. 动态规划。我们先用递归的思路来分析。我们先定义第一个函数f(i,j)表示到达坐标为(i,j)的格子时能拿到的礼物总和的最大值。根据题目要求,我们有两种可能的途径到达坐标为(i,j)的格子:通过格子(i-1,j)或者(i,j-1)。所以f(i,j)= max(f(i-1,j), f(i,j-1)) + gift[i,j]。gift[i,j]表示坐标为(i,j)的格子里礼物的价值。
  2. 我们可以定义缓存数组来提高效率,避免递归带来的大量重复计算的问题。

测试用例

  1. 功能测试:多行多列的矩阵;一行或者一列的矩阵;只有一个数字的矩阵。
  2. 特殊输入测试:指向矩阵数组的指针为nullptr。

Java代码

public class Offer047 {
public static void main(String[] args) {
test1();
test2();
test3(); } public static int getMaxValue(int[][] values) {
return Solution2(values);
} /**
* 用二位数组缓存
* @param values
* @return
*/
private static int Solution1(int[][] values) {
if(values==null || values.length<=0 || values[0].length<=0) {
return 0;
}
int rows = values.length;
int cols = values[0].length;
int[][] maxValues = new int[rows][cols];
for(int i=0;i<rows;i++) {
for(int j=0;j<cols;j++) {
int left = 0;
int up = 0;
if(i>0) {
up = maxValues[i-1][j];
}
if(j>0) {
left = maxValues[i][j-1];
}
maxValues[i][j] = Math.max(up,left)+values[i][j];
}
} return maxValues[rows-1][cols-1];
} /**
* 可以简化为一维数组
* @param values
* @return
*/
private static int Solution2(int[][] values) {
if(values==null || values.length<=0 || values[0].length<=0) {
return 0;
}
int rows = values.length; //行
int cols = values[0].length;//列 int[] maxValue = new int[cols];
for(int i=0;i<rows;i++) {
for(int j=0;j<cols;j++) {
int left = 0;
int up = 0;
if(i>0) {
up = maxValue[j];
}
if(j>0) {
left = maxValue[j-1];
}
maxValue[j] = Math.max(up,left)+values[i][j];
}
}
return maxValue[cols-1];
} private static void test1() {
int[][] values = {{1,10,3,8},{12,2,9,6},{5,7,4,11},{3,7,16,5}};
int maxValue = getMaxValue(values);
System.out.println(maxValue);
} private static void test2() { }
private static void test3() { }
}

代码链接

剑指Offer代码-Java

【Offer】[47] 【礼物的最大价值】的更多相关文章

  1. 力扣 - 剑指 Offer 47. 礼物的最大价值

    题目 剑指 Offer 47. 礼物的最大价值 思路1 因为是要求最大价值,而且只能移动下方或者右方,因此,每个位置的最大值就是本身的值加上上边 / 左边 中的最大值,然后每次遍历都可以复用上一次的值 ...

  2. 【Java】 剑指offer(47) 礼物的最大价值

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值( ...

  3. 每日一题 - 剑指 Offer 47. 礼物的最大价值

    题目信息 时间: 2019-07-02 题目链接:Leetcode tag:动态规划 难易程度:中等 题目描述: 在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0). ...

  4. 剑指 Offer 47. 礼物的最大价值

    题目描述 在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0).你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格.直到到达棋盘的右下角.给定一个棋盘及 ...

  5. 《剑指offer》面试题47. 礼物的最大价值

    问题描述 在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0).你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格.直到到达棋盘的右下角.给定一个棋盘及 ...

  6. 剑指offer——49礼物的最大价值

    题目描述 在一个m*n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于0).你可以从棋盘的左上角开始拿格子里的礼物,并每次向左或者向下移动一格,知道到达棋盘的右下角.给定一个棋盘及其上面 ...

  7. 《剑指offer》第四十七题(礼物的最大价值)

    // 面试题47:礼物的最大价值 // 题目:在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值 // (价值大于0).你可以从棋盘的左上角开始拿格子里的礼物,并每次向左或 // 者向下 ...

  8. [剑指Offer]47-礼物的最大价值(DP)

    题目描述 在一个m*n的棋盘每个格有一个礼物,每个礼物有一定价值(>0).从棋盘左上角到右下角,只能向下或向右走,问能拿到的礼物最大价值. 解题思路 dp. 可将二维数组版优化为一维数组版. 代 ...

  9. acwing 60. 礼物的最大价值

    地址 https://www.acwing.com/problem/content/56/ 在一个m×n的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于0). 你可以从棋盘的左上角开始拿 ...

随机推荐

  1. js中判断一个对象的类型的种种方法

    javascript中检测对象的类型的运算符有:typeof.constructor.instanceof. typeof:typeof是一个一元运算符,返回结果是一个说明运算数类型的字符串.如:&q ...

  2. Spring文档学习

    Spring文档学习 参考Spring Framework Documentation学习 1. IoC 容器 1.1 容器实例化 <beans> <import resource= ...

  3. kafka消息的处理机制(五)

    这一篇我们不在是探讨kafka的使用,前面几篇基本讲解了工作中的使用方式,基本api的使用还需要更深入的去钻研,多使用才会有提高.今天主要是探讨一下kafka的消息复制以及消息处理机制. 1. bro ...

  4. 牛客多校训练第八场G.Gemstones(栈模拟)

    题目传送门 题意: 输入一段字符串,字符串中连续的三个相同的字符可以消去,消去后剩下的左右两段字符串拼接,求最多可消去次数. 输入:ATCCCTTG   输出:2 ATCCCTTG(消去CCC)——& ...

  5. Selenium+Java - 结合sikuliX操作Flash网页

    前言 前天被一个Flash的轮播图,给玩坏了,无法操作,后来请教了下crazy总拿到思路,今天实践了下,果然可以了,非常感谢! 模拟场景 打开百度地图 切换城市到北京 使用测距工具 测量 奥林匹克森林 ...

  6. 浅谈IDEA集成SSM框架(SpringMVC+Spring+MyBatis)

    前言 学习完MyBatis,Spring,SpringMVC之后,我们需要做的就是将这三者联系起来,Spring实现业务对象管理,Spring MVC负责请求的转发和视图管理, MyBatis作为数据 ...

  7. Hadoop - YARN Introduce

    YARN Introduce 1. MapReduce1.0缺陷 (1)存在单点故障 (2)JobTracker"大包大揽"导致任务过重(任务多时内存开销大,上限4000节点) ( ...

  8. 使用rpm安装指定版本的docker(1.12.6)

    一.原因 如果系统是Centos7.3,直接使用yum install docker安装的docker版本是1.13.1,导致在创建容器的会报错,错误如下: 所以为了防止安装高版本的docker引发的 ...

  9. STL 队列

    头文件 #include <queue> 定义 普通队列: queue < int > q; 优先队列: priority_queue < int, vector< ...

  10. S3C2440 移植最新5.2linux内核

    基于 移植uboot后. 1. 移植linux内核 1.1 下载源码 打开 https://www.kernel.org/ 直接肝最新的 5.2.8 下载完后,在ubuntu里解压备用. 1.2 搭建 ...