C表达式中的汇编指令
C 表达式中的汇编指令
asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析。
asm 表达式有两种形式,第二种 asm-qualifiers 包含了 goto 语句。
第一种形式为常见的用法,AssemblerTemplate 和 OutputOperands 必须存在, 其中 Clobbers 存在需要 InputOperands 也出现。
asm asm-qualifiers ( AssemblerTemplate
: OutputOperands
[ : InputOperands
[ : Clobbers ] ])
asm asm-qualifiers ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
Qualifiers 的类型
- volatile, 避免编译器的优化
- inline, 内敛限定符,最小的体积
- goto, 包含跳转指令
参数
- AssemblerTemplate
- 汇编指令模板是包含汇编器指令的文字字符串,编辑器替换引用输入,编译器不会解析该指令的含义。 - OutputOperands
- 由 AssemblerTemplate 中的指令修改的C变量的逗号分隔列表,允许使用空列表。 - InputOperands
- 由 AssemblerTemplate 中的指令读取的C变量的逗号分隔列表,允许使用空列表。 - Clobbers
- 用逗号分隔的寄存器列表或由 AssemblerTemplate 修改的值,不能出现在 OutputOperands 和 InputOperands 中被提及,允许使用空列表。 - GotoLabels
- 当使用asm的goto形式时,此部分包含 AssemblerTemplate 中的代码可能跳转到的所有C标签的列表。
AssemblerTemplate
汇编指令由一个字符串给出,多条汇编指令结合在一起使用的时候,中间以 \r\t 隔开,如
asm("inc %0\n\tinc %0" : "=r"(res) : "0"(res));
/APP
# 11 "asm.c" 1
inc %rax
inc %rax
# 0 "" 2
/NO_APPs
需要转义的字符:%, =, {, }, |
故在ATT汇编中,对寄存器进行操作的需要双 %%, 如 inc %%rax.
OutputOperands
操作数之间用逗号分隔。 每个操作数具有以下格式:
[ [asmSymbolicName] ] constraint (cvariablename)
- asmSymbolicName
- 为操作数指定名称,格式为%[name]
c // res = num asm("movq %[num], %[res]" : [res] "=r"(res) : [num] "m"(num));
- 如果未指定名称使用数字, 从 output 域开始,第一个参数为 %0, 一次类推, 这里的 res 为 %0, num 为 %1
c // res = num asm("movq %1, %0" : "=r"(res) : "m"(num)); - constraint
- 一个字符串常量,用于指定对操作数的存储的 约束, 需要以 "=" 或 "+" 开头 - cvariablename
- 指定一个C左值表达式来保存输出,通常是一个变量名。 括号是语法的必需部分
第一个参数为增加可读性使用的,现在我们有代码如下
int64_t res;
int64_t num = 1;
asm("movq %[num], %[res]" : [res] "=r"(res) : [num] "m"(num));
asm("movq %1, %0" : "=r"(res) : "m"(num));
asm("movq %1, %0" : "=m"(res) : "m"(num));
asm("movq %1, %0" : "=r"(res) : "r"(num));
// 对应的汇编代码, 只保留asm表达式中的代码
# 13 "asm.c" 1
movq -16(%rbp), %rax // asm-1
# 0 "" 2
/NO_APP
/APP
# 15 "asm.c" 1
movq -16(%rbp), %rax // asm-2
# 0 "" 2
/NO_APP
/APP
# 17 "asm.c" 1
movq -16(%rbp), -8(%rbp) // asm-3
# 0 "" 2
/NO_APP
/APP
# 19 "asm.c" 1
movq %rax, %rax // asm-4
# 0 "" 2
/NO_APP
- 使用名称替换和数字替换效果一样,见 asm-1 和 asm-2
- 约束的用法,这里使用比较简单通用的的两种情况,
r为通过寄存器寻址操作,m通过内存寻址操作,所以看到当约束了r就对应寄存器的操作。 - 结果保存在 res 也就是 cvariablename 中
InputOperands
输入操作数使C变量和表达式中的值可用于汇编代码。
[ [asmSymbolicName] ] constraint (cexpression)
- asmSymbolicName 和输出列表的用法完全一致
- constraint 约束不能使用
=和+. 可以使用 "0", 这表明在输出约束列表中(从零开始)的条目,指定的输入必须与输出约束位于同一位置。
int64_t res = 3;
int64_t num = 1;
asm("addq %1, %0" : "=g"(res) : "0"(num));
// 输入输出位置相同
movq $3, -8(%rbp)
movq $1, -16(%rbp)
movq -16(%rbp), %rax
/APP
# 32 "asm.c" 1
addq %rax, %rax
# 0 "" 2
/NO_APP
- cexpression 可以不为左值,作为汇编表达式的输入值即可
Clobbers
破坏列表,主要用于指示编译器生成的汇编指令。
从asm表达式中看到输出操作数中列出条目的更改编译器是可以确定的,但内联汇编代码可能不仅对输出进行了修改。 例如,计算可能需要其他寄存器,或者处理器可能会由于特定汇编程序指令而破坏寄存器的值。 为了将这些更改通知编译器,在Clobber列表中列出这些会产生副作用的条目。 破坏列表条目可以是寄存器名称,也可以是特殊的破坏列表项(在下面列出)。 每个内容列表条目都是一个字符串常量,用双引号引起来并用逗号分隔。
寄存器
```c
asm volatile("movc3 %0, %1, %2"
: /* No outputs. */
: "r"(from), "r"(to), "g"(count)
: "%rbx", "%rcx", "%rdx", "memory"); /APP
# 25 "asm.c" 1
movc3 %rax, %r8, -72(%rbp)
# 0 "" 2
/NO_APP
``` 可以看到使用到了 rax 寄存器,然后修改程序在 Clobbers 增加 %rax, 结果如下 ```c
asm volatile("movc3 %0, %1, %2"
: /* No outputs. */
: "r"(from), "r"(to), "g"(count)
: "%rax", "%rbx", "%rcx", "%rdx", "memory"); /APP
# 25 "asm.c" 1
movc3 %r8, %r9, -72(%rbp)
# 0 "" 2
/NO_APP
```
编译器在产生的汇编代码中就未使用 %rax 寄存器了。
特殊破坏列表项
- "cc", 表示汇编代码修改了标志寄存器
- "memory", 为了确保内存中包含正确的值,编译器可能需要在执行asm之前将特定的寄存器值刷新到内存中
编译器为了破坏列表项的值受到破坏,当这些条目是寄存器时,不对其进行使用;为特殊参数时,重新刷新得到最新的值。
约束
- 一些基础的约束
| 约束名 | 说明 |
|---|---|
| whitespace | 空白字符被忽略 |
| m | 允许使用内存操作数,以及机器通常支持的任何类型的地址 |
| o | 允许使用内存操作数,但前提是地址是可偏移的 |
| V | 允许使用内存操作数,不可偏移的内存地址,与 "o'互斥 |
| r | 允许在通用寄存器中使用的寄存器操作数,其中可以指定寄存器,如 a(%rax), b(%rbx) |
| i | 允许使用立即整数操作数 |
| n | 允许使用具有已知数值的立即整数操作数, ‘I’, ‘J’, ‘K’, … ‘P’ 更应该使用 n |
| F | 允许使用浮点立即数 |
| g | 允许使用任何寄存器,内存或立即数整数操作数,但非通用寄存器除外 |
| X | 允许任何操作数, ‘0’, ‘1’, ‘2’, … ‘9’ |
| p | 允许使用有效内存地址的操作数 |
- 标识符约束
| 标识符 | 说明 |
|---|---|
| = | 表示此操作数是由该指令写入的:先前的值将被丢弃并由新数据替换 |
| + | 表示该操作数由指令读取和写入 |
| & | 表示(在特定替代方法中)此操作数是早期指令操作数,它是在使用输入操作数完成指令之前写入的,故输入操作数部分不能分配与输出操作数相同的寄存器 |
| % | 表示该操作数与后续操作数的可交换指令 |
内核示例
- x86 的内存屏障指令。
// 避免编译器的优化,声明此处内存可能发生破坏
#define barrier() asm volatile("" ::: "memory")
// 在32位的CPU下,lock 指令为锁总线,加上一条内存操作指令就达到了内存屏障的作用,64位的cpu已经有新增的 *fence 指令可以使用
// mb() 执行一个内存屏障作用的指令,为指定CPU操作;破坏列表声明 cc memory 指示避免编译器进行优化
#ifdef CONFIG_X86_32
#define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#else
#define mb() asm volatile("mfence":::"memory")
#define rmb() asm volatile("lfence":::"memory")
#define wmb() asm volatile("sfence" ::: "memory")
#endif
- x86 下获取 current 的值
DECLARE_PER_CPU(struct task_struct *, current_task);
#define this_cpu_read_stable(var) percpu_stable_op("mov", var)
static __always_inline struct task_struct *get_current(void)
{
return this_cpu_read_stable(current_task);
}
#define percpu_stable_op(op, var) \
({ \
typeof(var) pfo_ret__; \
switch (sizeof(var)) { \
case 8: \
asm(op "q "__percpu_arg(P1)",%0" \
: "=r" (pfo_ret__) \
: "p" (&(var))); \
break; \
} \
pfo_ret__; \
})
current_task 为一个 struct task_struct 类型的指针,追踪宏调用,在x86-64 下命中了 case 8: 的汇编代码, 展开的代码为
asm("mov" "q ""%%""gs" ":" "%" "P1"",%0" : "=r" (pfo_ret__) : "p" (&(current_task)));
// 变换一下为
asm("movq %%gs:%P1, %0" : "=r"(pfo_ret__) : "p"(&(current_task)));
这行代码的含义为将 约束输入部分必须为有效的地址(p约束), 将CPU id(通过段寄存器gs和偏移通过GDT得到,这里后文分析了)通过寄存器(r约束)赋值给 pfo_ret__.
参考
C表达式中的汇编指令的更多相关文章
- C 表达式中的汇编指令
asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析. asm 表达式有两种形式,第二种 asm-qualifier ...
- [zhuan]arm中的汇编指令
http://blog.csdn.net/qqliyunpeng/article/details/45116615 一. 带点的(一般都是ARM GNU伪汇编指令) 1. ".text& ...
- ARM中的---汇编指令
一. 带点的(一般都是ARM GNU伪汇编指令) 1. ".text".".data".".bss" 依次表示的是"以下是代码段& ...
- C/C++中书写汇编指令
汇编语言的指令格式目前有两种不同的标准:Windows下的汇编语言基本上都遵循Intel风格的语法,比如:MASM.NASM,Unix/Linux下的汇编语言基本上都遵循AT&T风格的语法. ...
- ARM中的汇编指令
Arm指令,32位的指令集,一共有16条的基本指令,每条指令都可以按条件执行, 指令都是32bit的,高四位是条件码[31:28], Thumb指令,16位的指令集,执行效率比arm指令集要低,但是节 ...
- Uboot中汇编指令
LDR(load register)指令将内存内容加载入通用寄存器 ARM是RISC结构,数据从内存到CPU之间的移动只能通过L/S指令来完成,也就是ldr/str指令.比如想把数据从内存中某处读取到 ...
- 计算机系统6-> 计组与体系结构3 | MIPS指令集(中)| MIPS汇编指令与机器表示
上一篇计算机系统5-> 计组与体系结构2 | MIPS指令集(上)| 指令系统从顶层讲解了一个指令集 / 指令系统应当具备哪些特征和工作原理.这一篇就聚焦MIPS指令集(MIPS32),看看其汇 ...
- C语言中插入汇编nop指令
工作过程中,有的时候需要打桩cycle,想在C语言中插入nop指令,可以采取的方法是 头文件中加入#inlude <stdio.h> 定义一个内联函数,然后调用这个函数,不过得测一下平台调 ...
- 学习linux内核时常碰到的汇编指令(2)
转载:http://blog.sina.com.cn/s/blog_4be6adec01007xvh.html JNGE∶指令助记符——(有符号数比较)不大于且不等于转移(等价于JL).当SF和OF异 ...
随机推荐
- FreeRTOS优化与错误排查方法
写在前面 主要是为刚接触 FreeRTOS 的用户指出那些新手通常容易遇到的问题.这里把最主要的篇幅放在栈溢出以及栈溢出j检测上,因为栈相关的问题是初学者遇到最多的问题. printf-stdarg. ...
- JavaEE——JSP开发模式(model1)
model1开发模式 工作流程: ①浏览器请求,JSP页面接收 ②JSP根据请求和JavaBean进行交互 ③JavaBean进行业务处理,JDBC操纵数据库 ④JSP将请求结果返回浏览器页面 利用m ...
- 安装、卸载 cocoapods
卸载cocoapods: localhost:~ je$ sudo gem uninstall cocoapods Remove executables: pod, sandbox-pod in ad ...
- Angry Words 愤怒的话
_ Words said in anger are like scars left by nails in a fence. Even though you can pull all the nail ...
- 基于 WebGL 的 3D 动态柱状图表
发现现在工业SCADA上或者电信网管方面用图表的特别多,虽然绝大部分人在图表制作方面用的是echarts,他确实好用,但是有些时候我们不能调用别的插件,这个时候就得自己写这些美丽的图表了,然而图表轻易 ...
- AppBoxFuture: 服务模型的在线调试
框架内的服务模型(ServiceModel)用于处理各类业务逻辑(如最简单的CRUD操作),在设计时以类似于伪代码的形式存在,发布时后端会通过Roslyn转换并编译为运行时代码.为了方便开发者更简 ...
- CSRF漏洞实战靶场笔记
记录下自己写的CSRF漏洞靶场的write up,包括了大部分的CSRF实战场景,做个笔记. 0x01 无防护GET类型csrf(伪造添加成员请求) 这一关没有任何csrf访问措施 首先我们登录tes ...
- 关于参加AWD攻防比赛心得体会
今天只是简单写下心得和体会 平时工作很忙 留给学习的时间更加珍少宝贵. 重点说下第二天的攻防比赛吧 . 三波web题 .涉及jsp,php,py. 前期我们打的很猛.第一波jsp的题看到有首页预留后 ...
- NServiceBus+Saga开发分布式应用
前言 当你在处理异步消息时,每个单独的消息处理程序都是一个单独的handler,每个handler之间互不影响.这时如果一个消息依赖另一个消息的状态呢? 这时业务逻辑怎么处理? ...
- CSAPP:逆向工程【缓冲区溢出攻击】
逆向工程[缓冲区溢出攻击] 任务描述 掌握函数调用时的栈帧结构,利用输入缓冲区的溢出漏洞,将攻击代码嵌入当前程序的栈帧中,使程序执行我们所期望的过程. 主要方法 溢出的字符将覆盖栈帧上的数据,会覆盖程 ...