认识Airflow的DAG
前文Airflow的第一个DAG已经跑起来了我们的第一个任务. 本文就来丰富这个任务.
回顾我们的任务内容

- 我们定义了DAG的名称为
Hello-World, 这个叫dag_id, - 补充说明description
- 定义了调度间隔schedule_interval, 这是一个cron表达式
- 引入了一个bash任务
- 有一个重要的参数default_args, 这是dag定义的参数
如何执行不同的任务
airflow里通过引入不同的operator来执行不同的操作. 目前,内置了一些:
https://github.com/apache/airflow/tree/master/airflow/operators
第三方也贡献了一些:
https://github.com/apache/airflow/tree/master/airflow/contrib/operators
还可以自己编写plugin, 制作自己的任务类型插件.
当想要使用这些插件的时候,只要引入
from airflow.operators.bash_operator import BashOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import BranchPythonOperator
from operators.rdbms_to_redis_operator import RDBMS2RedisOperator
from operators.rdbms_to_hive_operator import RDBMS2HiveOperator
from operators.hive_to_rdbms_operator import Hive2RDBMSOperator
然后填充需要的参数:
t1 = BashOperator(task_id="hello",
bash_command="echo 'Hello World, today is {{ ds }}'",
dag=dag)
可以参照https://github.com/apache/airflow/tree/master/airflow/example_dags 以及源码来使用这些任务插件。
如何获取任务执行日期
这个值得单独扯一篇文章, 这里简单带一下. 通过jinja模板变量可以获取任务日期.
以下几个变量用户基本够用
templated_command = """
echo "current bizdate is: {{ ds }} "
echo "current bizdate in number: {{ ds_nodash }} "
echo "7days after: {{ macros.ds_add(ds, 7)}} "
echo "5 days ago: {{ macros.ds_add(ds, -5) }} "
echo "bizdate iso8601 {{ ts }} "
echo "bizdate format: {{ execution_date.strftime("%d-%m-%Y") }} "
echo "bizdate 5 days ago format: {{ (execution_date - macros.timedelta(days=5)).strftime("%Y-%m-%d") }} "
"""
t1 = BashOperator(
task_id='print_date1',
bash_command=templated_command,
# on_success_callback=compass_utils.success_callback(dingding_conn_id='dingding_bigdata', receivers="ryanmiao"),
dag=dag)
执行结果日志为:
echo "current bizdate is: 2019-09-28 "
echo "current bizdate in number: 20190928 "
echo "7days after: 2019-10-05 "
echo "5 days ago: 2019-09-23 "
echo "bizdate iso8601 2019-09-28T01:00:00+08:00 "
echo "bizdate format: 28-09-2019 "
echo "bizdate 5 days ago format: 2019-09-23 "
告警
任务自己跑, 跑的结果如何, 我们需要一个通知. 可以成功的时候告诉我, 也可以失败的时候告诉我.
default_args = {
'owner': 'ryanmiao',
'depends_on_past': False,
'start_date': datetime(2019, 5, 1, 9),
'email': ['ryan.miao@nf-3.com'],
'email_on_failure': False,
'email_on_retry': False,
# 'on_failure_callback': compass_utils.ding_failure_callback('dingding_bigdata'),
# 'on_success_callback': compass_utils.ding_success_callback('dingding_bigdata')
}
默认自带的email on failure邮件通知,需要在配置文件里设置email。当然,我们通常是有自己的通知服务的,还集成自己的认证之类的。所以,Airflow提供了通知回调。
on_failure_callback 一个Python函数,失败的时候执行
on_success_callback 一个Python函数,成功的时候执行
比如,我需要添加钉钉通知。
from airflow.contrib.operators.dingding_operator import DingdingOperator
def failure_callback(context):
"""
The function that will be executed on failure.
:param context: The context of the executed task.
:type context: dict
"""
message = 'AIRFLOW TASK FAILURE TIPS:\n' \
'DAG: {}\n' \
'TASKS: {}\n' \
'Reason: {}\n' \
.format(context['task_instance'].dag_id,
context['task_instance'].task_id,
context['exception'])
return DingdingOperator(
task_id='dingding_success_callback',
dingding_conn_id='dingding_default',
message_type='text',
message=message,
at_all=True,
).execute(context)
args['on_failure_callback'] = failure_callback
后台admin-connections去配置钉钉的群组token,然后这里引用connId即可。
同样的,我们可以使用http请求调用我们自己的通知服务啊,用来发邮件,打电话什么的,都可以自定义。后面介绍自定义插件来实现这种自定义通知功能。
DAG的任务依赖
dag的任务依赖定义很简单:
a >> b b依赖a
a << b a依赖b
a >> b >> c 依赖可以串起来
[a,b] >> c 可以依赖多个
每个依赖语句通过换行分割, 最终会组装一个完整的依赖。
DAG的一些参数
先看看源码的注释
"""
A dag (directed acyclic graph) is a collection of tasks with directional
dependencies. A dag also has a schedule, a start date and an end date
(optional). For each schedule, (say daily or hourly), the DAG needs to run
each individual tasks as their dependencies are met. Certain tasks have
the property of depending on their own past, meaning that they can't run
until their previous schedule (and upstream tasks) are completed.
DAGs essentially act as namespaces for tasks. A task_id can only be
added once to a DAG.
:param dag_id: The id of the DAG
:type dag_id: str
:param description: The description for the DAG to e.g. be shown on the webserver
:type description: str
:param schedule_interval: Defines how often that DAG runs, this
timedelta object gets added to your latest task instance's
execution_date to figure out the next schedule
:type schedule_interval: datetime.timedelta or
dateutil.relativedelta.relativedelta or str that acts as a cron
expression
:param start_date: The timestamp from which the scheduler will
attempt to backfill
:type start_date: datetime.datetime
:param end_date: A date beyond which your DAG won't run, leave to None
for open ended scheduling
:type end_date: datetime.datetime
:param template_searchpath: This list of folders (non relative)
defines where jinja will look for your templates. Order matters.
Note that jinja/airflow includes the path of your DAG file by
default
:type template_searchpath: str or list[str]
:param template_undefined: Template undefined type.
:type template_undefined: jinja2.Undefined
:param user_defined_macros: a dictionary of macros that will be exposed
in your jinja templates. For example, passing ``dict(foo='bar')``
to this argument allows you to ``{{ foo }}`` in all jinja
templates related to this DAG. Note that you can pass any
type of object here.
:type user_defined_macros: dict
:param user_defined_filters: a dictionary of filters that will be exposed
in your jinja templates. For example, passing
``dict(hello=lambda name: 'Hello %s' % name)`` to this argument allows
you to ``{{ 'world' | hello }}`` in all jinja templates related to
this DAG.
:type user_defined_filters: dict
:param default_args: A dictionary of default parameters to be used
as constructor keyword parameters when initialising operators.
Note that operators have the same hook, and precede those defined
here, meaning that if your dict contains `'depends_on_past': True`
here and `'depends_on_past': False` in the operator's call
`default_args`, the actual value will be `False`.
:type default_args: dict
:param params: a dictionary of DAG level parameters that are made
accessible in templates, namespaced under `params`. These
params can be overridden at the task level.
:type params: dict
:param concurrency: the number of task instances allowed to run
concurrently
:type concurrency: int
:param max_active_runs: maximum number of active DAG runs, beyond this
number of DAG runs in a running state, the scheduler won't create
new active DAG runs
:type max_active_runs: int
:param dagrun_timeout: specify how long a DagRun should be up before
timing out / failing, so that new DagRuns can be created. The timeout
is only enforced for scheduled DagRuns, and only once the
# of active DagRuns == max_active_runs.
:type dagrun_timeout: datetime.timedelta
:param sla_miss_callback: specify a function to call when reporting SLA
timeouts.
:type sla_miss_callback: types.FunctionType
:param default_view: Specify DAG default view (tree, graph, duration,
gantt, landing_times)
:type default_view: str
:param orientation: Specify DAG orientation in graph view (LR, TB, RL, BT)
:type orientation: str
:param catchup: Perform scheduler catchup (or only run latest)? Defaults to True
:type catchup: bool
:param on_failure_callback: A function to be called when a DagRun of this dag fails.
A context dictionary is passed as a single parameter to this function.
:type on_failure_callback: callable
:param on_success_callback: Much like the ``on_failure_callback`` except
that it is executed when the dag succeeds.
:type on_success_callback: callable
:param access_control: Specify optional DAG-level permissions, e.g.,
"{'role1': {'can_dag_read'}, 'role2': {'can_dag_read', 'can_dag_edit'}}"
:type access_control: dict
:param is_paused_upon_creation: Specifies if the dag is paused when created for the first time.
If the dag exists already, this flag will be ignored. If this optional parameter
is not specified, the global config setting will be used.
:type is_paused_upon_creation: bool or None
"""
emmm, 这里就不一一拆解了,我倾向于用一个了解一个。用的时候对着看。
小结
dag的组成很简单, Python语法式的声明比起property和yaml的配置来说,更容易组织和理解。
定义好dag参数,定义任务类型Operator, 定义任务依赖就完事了。
认识Airflow的DAG的更多相关文章
- airflow删除dag不在页面显示
当我们需要把dag删除的时候,遇到了删除了相应的dag文件,但页面还是显示 这个时候需要重启airflow 的webserver ps -ef|egrep rm -rf /home/airflow ...
- [AirFlow]AirFlow使用指南三 第一个DAG示例
经过前两篇文章的简单介绍之后,我们安装了自己的AirFlow以及简单了解了DAG的定义文件.现在我们要实现自己的一个DAG. 1. 启动Web服务器 使用如下命令启用: airflow webserv ...
- [AirFlow]AirFlow使用指南二 DAG定义文件
1. Example """ Code that goes along with the Airflow tutorial located at: https://git ...
- 调度系统Airflow的第一个DAG
Airflow的第一个DAG 考虑了很久,要不要记录airflow相关的东西, 应该怎么记录. 官方文档已经有比较详细的介绍了,还有各种博客,我需要有一份自己的笔记吗? 答案就从本文开始了. 本文将从 ...
- 系统研究Airbnb开源项目airflow
开源项目airflow的一点研究 调研了一些几个调度系统, airflow 更满意一些. 花了些时间写了这个博文, 这应该是国内技术圈中最早系统性研究airflow的文章了. 转载请注明出处 htt ...
- 【原创】大数据基础之Airflow(1)简介、安装、使用
airflow 1.10.0 官方:http://airflow.apache.org/ 一 简介 Airflow is a platform to programmatically author, ...
- 搭建Airflow数据流调度器
服务器使用的是centos系统,需要安装好pip和setuptools,同时注意更新安装的版本 接下来参考安装好Airflow Airflow 1.8 工作流平台搭建 http://blog.csdn ...
- apache airflow docker 运行简单试用
airflow 是一个编排.调度和监控workflow的平台,由Airbnb开源,现在在Apache Software Foundation 孵化. airflow 将workflow编排为tasks ...
- Airflow使用入门指南
Airflow能做什么 关注公众号, 查看更多 http://mp.weixin.qq.com/s/xPjXMc_6ssHt16J07BC7jA Airflow是一个工作流分配管理系统,通过有向非循环 ...
随机推荐
- 完结撒花!129 集 21 个小时,松哥自制的 Spring Boot2 系列视频教程杀青啦!
松哥的 Spring Boot 教程分为几个阶段. 2016 松哥最早在 2016 年底的时候开始写 Spring Boot 系列的教程,记得当时在广州上班,年底那段时间在深圳出差,在深圳人生地不熟, ...
- 简单使用AspectJ
AspectJ是一个AOP框架,由于SpringAOP的配置过于繁琐,因此使用了AspectJ依赖注解开发 1.Aspecj依赖坐标,此处省略了Spring相关依赖 <dependency> ...
- 最近学习了JDK SPI
JDK SPI是什么 最近工作中听几个同事说了好几次SPI这个名词,虽然和我没关系,但是心里默默想还是学习一下,不然下次和我说到SPI,连是什么都不知道那就尴尬了. 所以SPI是什么呢?SPI全称Se ...
- 小白专场-多项式乘法与加法运算-c语言实现
目录 一.题意理解 二.求解思路 三.多项式的表示 3.1 数组 3.2 链表 四.程序框架搭建 五.如何读入多项式 六.如何将两个多项式相加 七.如何将两个多项式相乘 八.如何将多项式输出 一.题意 ...
- Orders POJ - 1731
The stores manager has sorted all kinds of goods in an alphabetical order of their labels. All the k ...
- Fire Balls 09——修正游戏的BUG
版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...
- Spring MVC中返回JSON数据的几种方式
我们都知道Spring MVC 的Controller方法中默认可以返回ModeAndView 和String 类型,返回的这两种类型数据是被DispatcherServlet拿来给到视图解析器进行继 ...
- 分布式之分布式事务、分布式锁、接口幂等性、分布式session
一.分布式session session 是啥?浏览器有个 cookie,在一段时间内这个 cookie 都存在,然后每次发请求过来都带上一个特殊的 jsessionid cookie,就根据这个东西 ...
- eclipse使用Gitlab
1.生成SSH key 用的是eclipse自带的生成key的工具,windows->preferences->General->Network Connections->SS ...
- 个人IP「Android大强哥」上线啦!
自从入职新公司之后就一直忙得不行,一边熟悉开发的流程,一边熟悉各种网站工具的使用,一边又在熟悉业务代码,好长时间都没有更文了. 不过新公司的 mentor(导师)还是很不错的,教给我很多东西,让我也能 ...