Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game)
Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game)
深度优先搜索的解题详细介绍,点击
你有 4 张写有 1 到 9 数字的牌。你需要判断是否能通过 *,/,+,-,(,) 的运算得到 24。
示例 1:
输入: [4, 1, 8, 7]
输出: True
解释: (8-4) * (7-1) = 24
示例 2:
输入: [1, 2, 1, 2]
输出: False
注意:
- 除法运算符
/表示实数除法,而不是整数除法。例如 4 / (1 - 2/3) = 12 。 - 每个运算符对两个数进行运算。特别是我们不能用
-作为一元运算符。例如,[1, 1, 1, 1]作为输入时,表达式-1 - 1 - 1 - 1是不允许的。 - 你不能将数字连接在一起。例如,输入为
[1, 2, 1, 2]时,不能写成 12 + 12 。
分析:
给定4元组,求如何使用 + - * / ( ) 来组合它们,使最后的值等于24.
思路:
- 从元组里选出2个
- 把这2个进行加减乘除操作
- 把元组中未选中的加入其中
- 再次从该元组中选2个
- 依此类推- 直到元组中只剩下1个元素时进行判断
代码中有几个点需要注意:
- 要把int数组转成double
- 判断数字是否等于24的方法,是看误差是否小于106
- 从数组中取2个数字后,new一个新的元组,把未选的数字加进去,再把计算后的结果加入新的元组
- 再次搜索
剪枝在代码中的体现有:
if (k < 2 && j > i) continue;
if (k == 3 && num2 != 0) list.add(num1 / num2);
第一个是去除了加法和乘法交换律带来的计算重复的问题。
第二个是去除分母为0带来的算术异常。
AC代码:
class Solution {
public boolean judgePoint24(int[] nums) {
ArrayList<Double> list = new ArrayList<>();
for (Integer num : nums) {
list.add((double)num);
}
return dfs(list);
}
public boolean dfs(ArrayList<Double> nums) {
if (nums.size() == 0) {
return false;
}
if (nums.size() == 1) {
return Math.abs(nums.get(0) - 24) < 1e-6;
}
for (int i = 0; i < nums.size(); i++) {
for (int j = 0; j < nums.size(); j++) {
if (i != j) {
double num1 = nums.get(i);
double num2 = nums.get(j);
ArrayList<Double> list = new ArrayList<>();
for (int k = 0; k < nums.size(); k++) {
if (k != i && k != j)
list.add(nums.get(k));
}
for (int k = 0; k < 4; k++) {
if (k < 2 && j > i)
continue;
if (k == 0)
list.add(num1 + num2);
else if (k == 1)
list.add(num1 * num2);
else if (k == 2)
list.add(num1 - num2);
else if (k == 3 && num2 != 0)
list.add(num1 / num2);
else
continue;
if (dfs(list)){
return true;
}
list.remove(list.size() - 1);
}
}
}
}
return false;
}
}
Leetcode之深度优先搜索&回溯专题-679. 24 点游戏(24 Game)的更多相关文章
- Leetcode之深度优先搜索&回溯专题-491. 递增子序列(Increasing Subsequences)
Leetcode之深度优先搜索&回溯专题-491. 递增子序列(Increasing Subsequences) 深度优先搜索的解题详细介绍,点击 给定一个整型数组, 你的任务是找到所有该数组 ...
- Leetcode之深度优先搜索&回溯专题-980. 不同路径 III(Unique Paths III)
Leetcode之深度优先搜索&回溯专题-980. 不同路径 III(Unique Paths III) 深度优先搜索的解题详细介绍,点击 在二维网格 grid 上,有 4 种类型的方格: 1 ...
- Leetcode之深度优先搜索&回溯专题-638. 大礼包(Shopping Offers)
Leetcode之深度优先搜索&回溯专题-638. 大礼包(Shopping Offers) 深度优先搜索的解题详细介绍,点击 在LeetCode商店中, 有许多在售的物品. 然而,也有一些大 ...
- Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)
Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,它的每个结点都存放 ...
- Leetcode之深度优先搜索(DFS)专题-199. 二叉树的右视图(Binary Tree Right Side View)
Leetcode之深度优先搜索(DFS)专题-199. 二叉树的右视图(Binary Tree Right Side View) 深度优先搜索的解题详细介绍,点击 给定一棵二叉树,想象自己站在它的右侧 ...
- Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree)
Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree) 深度优先搜索的解题详细介绍,点击 给定一个 N 叉树,找到其最大深度 ...
- Leetcode之深度优先搜索(DFS)专题-1020. 飞地的数量(Number of Enclaves)
Leetcode之深度优先搜索(DFS)专题-1020. 飞地的数量(Number of Enclaves) 深度优先搜索的解题详细介绍,点击 给出一个二维数组 A,每个单元格为 0(代表海)或 1( ...
- Leetcode之深度优先搜索(DFS)专题-690. 员工的重要性(Employee Importance)
Leetcode之深度优先搜索(DFS)专题-690. 员工的重要性(Employee Importance) 深度优先搜索的解题详细介绍,点击 给定一个保存员工信息的数据结构,它包含了员工唯一的id ...
- Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill)
Leetcode之深度优先搜索(DFS)专题-733. 图像渲染(Flood Fill) 深度优先搜索的解题详细介绍,点击 有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 ...
随机推荐
- Linux系统安装jdk——rpm版
这里简单地阐述一下rpm.deb.tar.gz的区别. rpm格式的软件包适用于基于Red Hat发行版的系统,如Red Hat Linux.SUSE.Fedora. deb格式的软件包则是适用于基于 ...
- linux文本编辑vim命令
1.Vim Vim 是一个功能强大的全屏幕文本编辑器,是 Linux/UNIX 上最常用的文本编辑器,它的作用是建立.编辑.显示文本文件. Vim 没有菜单,只有命令 2.Vim 工作模式 3.插入 ...
- gradle脚本源码查看环境搭建
背景 我刚入门学习gradle时,网上资料都是说通过gradle的api查看并学习脚本编写,但是api一般只有接口说明,并不能深入了解各个api的实现逻辑,有时就会对一些脚本的写法感到疑惑.通过搭建源 ...
- 闯荡Ext-第一篇
今天在网上找到了一本非常好的书:<Ext江湖>,这本书是由大漠穷秋大神写的,刚看到这本书的时候,心里面的那个激动劲啊,本来原先的时候心里面就一直念叨着想要学习Ext,但是苦于找不到好的资料 ...
- Unity的赛车游戏实现思路
unity目前版本实现赛车的技术方案主要有3种: 1.wheelCollider,设置motorTorque.brakeTorque.steerAngle来实现车子的推动和转弯,优点是上手简单,而且很 ...
- exe4j打包--jar打包exe
本文重点介绍如何将我们写的java代码打包成在电脑上可以运行的exe文件.这里只介绍直接打包成exe的方法,至于打包成exe安装包下节介绍 test 软件准备 exe4j集合包下载地址(下节内容也在这 ...
- 全世界仅有的唯一最高LINUX版本的白菜路由,支持NAND记
在上上篇 真千兆路由的极限之OPENWRT MAKE, 某品牌白菜价QCA9558/QCA9880/QCA8337N纯种组合OS搭建时记 里,有没有还记否之模式退一步,海阔天空 回到了远古时代的ar7 ...
- final,权限,引用类型数据
1. final关键字 1.概述 为了避免子类出现随意改写父类的情况,java提供了关键字final,用于修饰不可改变内容 final:不可改变,可以修饰类,方法和变量 类:被修饰的类,不能用于继承 ...
- ABAP-复制采购订单行项目到新的行
FUNCTION zmm_fm_copy2new. *"------------------------------------------------------------------- ...
- java之面向对象详解
#############java面向对象详解#############1.面向对象基本概念2.类与对象3.类和对象的定义格式4.对象与内存分析5.封装性6.构造方法7.this关键字8.值传递与引用 ...