Python高级特性——生成器(generator)
通过上节的学习,我们知道使用列表生成式,可以直接创建一个列表。但是,有些时候,受到内存的限制等实际情况,列表生成式无法满足。比如,一个长度为1000万的列表,普通内存根本就不够,又或者实际处理的过程中,我们只需要访问前面几个元素,那后面的的绝大部分的空间都浪费了。
思路:如果能做到一开始并不是创建完整的list,而是通过定义一种规则的方式,在循环的过程中不断的推算后续的元素,达到使用到哪个元素才生成哪个元素的效果?在Python中,这种机制称为生成器:generator。
创建generator,方法一:
>>> m = (x for x in range(10))
>>> m
<generator object <genexpr> at 0x0376BF00>
观察可知,和列表生成式相比,区别仅仅在于将最外层的[]换成()。请注意,m并不是一个list,而是一个generator。如何打印generator中的每一个元素呢?笨重方法(该方法基本用不到):
>>> next(m)
0
>>> next(m)
1
>>> l = ['hah','hehe']
>>> next(m)
2
中间有个小插曲,随便做了一个操作,紧接着我们又调用next函数,发现结果还是按照算法计算出下一个值。(当生成器没有更多的元素的时候,会抛出StopIteration错误)
方便的取元素方法:因为generator是可迭代对象(从StopIteration错误类型,我们也可以猜测出来),我们可以使用for循环实现取数:
>>> n = (a+b for a in 'abc' for b in 'xyz')
>>> for i in n:
... print(i)
...
ax
ay
az
bx
by
bz
cx
cy
cz
方法二:
如果上述中的推算算法比较复杂,使用方法一无法实现的时候,可以使用函数来实现。比如著名的斐波拉契数列(1,1,2,3,5,8,13,21……除了第一个和第二个数外,任意一个数都是由其前两个数相加的和)。斐波拉契数列使用列表生成式写不出来,可以使用函数把它打印出来:
>>> def fib(max):
... n,a,b = 0,0,1
... while n < max:
... print (b)
... a,b = b,a+b#相当于将一个tuple(b,a+b)赋值给a,b
... n = n + 1
... return
...
>>> fib (6)
1
1
2
3
5
8
其实,上述fib()和generator非常相近了。只需要把print(b)变成yield b 就可以了:
>>> def fib(max):
... n,a,b = 0,0,1
... while n < max:
... yield b
... a,b = b,a+b
... n = n+ 1
... return
...
>>> fib(6)
<generator object fib at 0x037DA120>
这就是定义generator的第二种方法。如果一个函数中包含yield关键字,那么这个函数就不再是普通函数,而是一个generator。两者的执行流程可以这么区别:普通函数是顺序执行,遇到return或者最后一行代码函数就会返回。而generator,在每次调用next()的时候执行,遇到yield语句返回。再次执行的时候,从上次返回的yield语句处继续执行。
使用for循环来迭代:
>>> m = fib(5)
>>> for i in m :
... print(i)
...
1
1
2
3
5
那么如何获取一个generator中的return的值呢?这时必须捕获StopIteration错误,返回值就包含在StopIteration的value中:
>>> def fib(max):
... n ,a,b = 0,0,1
... while n < max:
... yield b
... a,b = b,a+b
... n = n+1
... return 'Over'
...
>>> m = fib(6)
>>> while True:
... try:
... x = next(m)
... print(x)
... except StopIteration as e:
... print(e.value)
... break
...
1
1
2
3
5
8
Over
练习:
杨辉三角:
1 n=0
/ \
1 1 n=1
/ \ / \
1 2 1 n=2
/ \ / \ / \
1 3 3 1 n=3
/ \ / \ / \ / \
1 4 6 4 1 n=4
/ \ / \ / \ / \ / \
1 5 10 10 5 1 n=5
杨辉三角,把二项式系数图形化,把组合数内在的一些代数性质直观的从图形中表现出来,是一种离散型的数与形的优美结合。
有如下规律:
1,每行端点和结尾的数为1;
2、每行数左右对称,由1开始逐渐变大;
3、第n行有n项;
4、第n行数字之和为2的n-1次方;
5、第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数;
6、第n行的第m个数和n-m+1个数相等,为组合数性质之一;
7、每个数字等于上一行的左右两个数字之和;(利用此性质可写出整个杨辉三角)
8、(a+b)
n
的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项
如果把杨辉三角的每一行看做一个list,试写一个generator,不断输出下一行的list:
>>> def triangle():
... l=[1]
... while True:
... yield l
... l.append(0)
... l= [l[i-1]+l[i] for i in range(len(l))]
...
验证一下:
>>> x = triangle()
>>> next(x)
[1]
>>> next(x)
[1, 1]
>>> next(x)
[1, 2, 1]
>>> next(x)
[1, 3, 3, 1]
>>> next(x)
[1, 4, 6, 4, 1]
>>> next(x)
[1, 5, 10, 10, 5, 1]
>>> next(x)
[1, 6, 15, 20, 15, 6, 1]
>>> next(x)
[1, 7, 21, 35, 35, 21, 7, 1]
>>> next(x)
[1, 8, 28, 56, 70, 56, 28, 8, 1]
>>> next(x)
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
>>> next(x)
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]
>>> next(x)
[1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1]
>>> next(x)
[1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1]
收工!
Python高级特性——生成器(generator)的更多相关文章
- Day10 python高级特性-- 生成器 Generator
列表生成式可以创建列表,但是受内存限制,列表容量时有限的,创建一个巨量元素的列表,不仅占用很大的存储空间,当仅仅访问前几个元素时,后面的绝大多数元素占用的空间都被浪费了. 如果list的元素可以按照算 ...
- python高级特性-生成器
在python中一边循环一边计算的机制成为生成器(generator) 在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行. 生成list > ...
- 三、python高级特性(切片、迭代、列表生成器、生成器)
1.python高级特性 1.1切片 list列表 L=['Mli','add','sal','saoo','Lkkl'] L[0:3] #即为['Mli','add','sal'] 从索引0开始 ...
- python高级特性:切片/迭代/列表生成式/生成器
廖雪峰老师的教程上学来的,地址:python高级特性 下面以几个具体示例演示用法: 一.切片 1.1 利用切片实现trim def trim(s): while s[:1] == " &qu ...
- Python高级特性之:List Comprehensions、Generator、Dictionary and set ...
今天帅气的易哥和大家分享的是Pyton的高级特性,希望大家能和我一起学习这门语言的魅力. Python高级特性之:List Comprehensions.Generator.Dictionary an ...
- python高级之生成器&迭代器
python高级之生成器&迭代器 本机内容 概念梳理 容器 可迭代对象 迭代器 for循环内部实现 生成器 1.概念梳理 容器(container):多个元素组织在一起的数据结构 可迭代对象( ...
- 第三篇:python高级之生成器&迭代器
python高级之生成器&迭代器 python高级之生成器&迭代器 本机内容 概念梳理 容器 可迭代对象 迭代器 for循环内部实现 生成器 1.概念梳理 容器(container ...
- Python高级特性(1):Iterators、Generators和itertools(转)
译文:Python高级特性(1):Iterators.Generators和itertools [译注]:作为一门动态脚本语言,Python 对编程初学者而言很友好,丰富的第三方库能够给使用者带来很大 ...
- Python 高级特性介绍 - 迭代的99种姿势 与协程
Python 高级特性介绍 - 迭代的99种姿势 与协程 引言 写这个笔记记录一下一点点收获 测试环境版本: Python 3.7.4 (default, Sep 28 2019, 16:39:19) ...
随机推荐
- SpringBoot打成war包,部署Tomcat服务器
1: 创建spring boot项目 使用 Spring initializr 可以直接选择创建包的方式 也可以选择在Pom中更改 <groupId>com.dgw</grou ...
- 链式栈-C语言实现
相对于顺序栈的空间有限,链式栈的操作则更加灵活 #include<stdio.h> #include<malloc.h> typedef int SElemType; //元素 ...
- 理解Redis的单线程模式
0.概述 本文基于的Redis版本为4.0以下,在Redis更高版本中并不是完全的单线程了,增加了BIO线程,本文主要讲述主工作线程的单线程模式. 通过本文将了解到以下内容: Redis服务器采用单线 ...
- golang数据结构之循环链表
循环链表还是挺有难度的: 向链表中插入第一条数据的时候如何进行初始化. 删除循环链表中的数据时要考虑多种情况. 详情在代码中一一说明. 目录结构如下: circleLink.go package li ...
- 使用蓝图构建Flask项目目录
蓝图构建项目目录 什么是蓝图 一个应用中或跨应用制作应用组件和支持通用的模式 蓝图的作用 将不同的功能模块化 构建大型应用 优化项目结构 增强可读性,易于维护 蓝图构建项目目录 定义蓝图 app/ad ...
- ggplot2|玩转Manhattan图-你有被要求这么画吗?
本文首发于“生信补给站”,ggplot2|玩转Manhattan图-你有被要求这么画吗?更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号. Manhattan图算是GWAS分析的标配图 ...
- [NACOS HTTP-GET] The maximum number of tolerable server reconnection errors has been reached
错误的意思是:已达到可容忍的服务器重连接错误的最大数目.有两个解决思路:一个将这个值设置的更大:然后是排查自己连接服务哪儿出了问题.先说在哪儿设置这个值:在拉取nacos服务的注解配置中,添加一个属性 ...
- Linux下搭建及配置禅道服务器详细过程-包含软件资源
**1:百度云盘下载: ** 禅道--链接: https://pan.baidu.com/s/1Stu7nOZVIPO5TnpJWjWtiQ 提取码:dnik CentOs操作系统--链接: http ...
- hdu2546
Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负) ...
- Python3 并发编程小练习
实现基于TCP协议套接字,服务端实现接收客户端的连接并发 # server.py import socket from threading import Thread server = socket. ...