seq2seq+attention解读
2.Attention Mechanism原理
要介绍Attention Mechanism结构和原理,首先需要介绍下Seq2Seq模型的结构。Seq2Seq模型,想要解决的主要问题是,如何把机器翻译中,变长的输入X映射到一个变长输出Y的问题,其主要结构如图3所示。
图3 传统的Seq2Seq结构
从图中可以看出,seq2seq模型分为两个阶段:编码阶段和解码阶段。
编码阶段:
把一个变长的输入序列x1,x2,x3....xt输入RNN,LSTM或GRU模型,然后将得到各个隐藏层的输出进行汇总,生成语义向量:
也可以将最后的一层隐藏层的输出作为语义向量C :
这里的语义向量c有两个作用:1、做为decoder模型预测y1的初始向量。2、做为语义向量,指导y序列中每一个step的y的产出。
解码阶段:
Decoder主要是基于语义向量c和上一步的输出yi-1解码得到该时刻t的输出yi:
yi=g(yi-1,Si,C)
其中Si为隐藏层的输出。其中g代表的是非线性激活函数。
直到碰到结束标志(<EOS>),解码结束。
以上就是seq2seq的编码解码阶段。从上面可以看出,该模型存在两个明显的问题:
1、把输入X的所有信息有压缩到一个固定长度的隐向量C。当输入句子长度很长,特别是比训练集中最初的句子长度还长时,模型的性能急剧下降。
2、把输入X编码成一个固定的长度,对于句子中每个词都赋予相同的权重,这样做是不合理的,比如,在机器翻译里,输入的句子与输出句子之间,往往是输入一个或几个词对应于输出的一个或几个词。因此,对输入的每个词赋予相同权重,这样做没有区分度,往往是模型性能下降。
因此,需要引入Attention Mechanism来解决这个问题。
我们将解码yi时的公式改为如下形式:
yi=g(yi-1,Si,Ci)
即不同时刻的输出y使用不同的语义向量。
其中,si是decoder中RNN在在i时刻的隐状态,其计算公式为:
这里的语义向量ci的计算方式,与传统的Seq2Seq模型直接累加的计算方式不一样,这里的ci是一个权重化(Weighted)之后的值,其表达式如公式5所示:
其中,i表示decoder端的第i个词,hj表示encoder端的第j个词的隐向量,aij表示encoder端的第j个词与decoder端的第i个词之间的权值,表示源端第j个词对目标端第i个词的影响程度,aij的计算公式如公式6所示:
在公式6中,aij是一个softmax模型输出,概率值的和为1。eij用于衡量encoder端的位置j个词,对于decoder端的位置i个词的影响程度,换句话说:decoder端生成位置i的词时,有多少程度受encoder端的位置j的词影响。eij的计算方式有很多种,不同的计算方式,代表不同的Attention模型,最简单且最常用的的对齐模型是dot product乘积矩阵,即把解码端的输出隐状态ht与编码端的输出隐状态hs进行矩阵乘。常见的对齐计算方式如下:
常见的计算方式有以上几种方式。点乘(Dot product),权值网络映射(General)和concat映射几种方式。
seq2seq+attention解读的更多相关文章
- DL4NLP —— seq2seq+attention机制的应用:文档自动摘要(Automatic Text Summarization)
两周以前读了些文档自动摘要的论文,并针对其中两篇( [2] 和 [3] )做了presentation.下面把相关内容简单整理一下. 文本自动摘要(Automatic Text Summarizati ...
- seq2seq attention
1.seq2seq:分为encoder和decoder a.在decoder中,第一时刻输入的是上encoder最后一时刻的状态,如果用了双向的rnn,那么一般使用逆序的最后一个时刻的输出(网上说实验 ...
- 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...
- Tensorflow Seq2seq attention decode解析
tensorflow基于 Grammar as a Foreign Language实现,这篇论文给出的公式也比较清楚. 这里关注seq2seq.attention_decode函数, 主要输入 de ...
- seq2seq&attention图解
- NLP Attention
一.概述 自动摘要可以从很多角度进行分类,例如单文档摘要/多文档摘要.单语言摘要/跨语言摘要等.从技术上说,普遍可以分为三类: i. 抽取式摘要(extractive),直接从原文中抽取一些句子组成摘 ...
- attention 汇总(持续)
Seq2seq Attention Normal Attention 1. 在decoder端,encoder state要进行一个线性变换,得到r1,可以用全连接,可以用conv,取决于自己,这里 ...
- Attention & Transformer
Attention & Transformer seq2seq; attention; self-attention; transformer; 1 注意力机制在NLP上的发展 Seq2Seq ...
- NLP之基于Seq2Seq和注意力机制的句子翻译
Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 ...
随机推荐
- 05、Linux通配符、转义字符、环境变量
问题:作为Linux运维人员,我们有时候也会遇到明明一个文件的名称就在嘴边但就是想不起来的情况.如果就记得一个文件的开头几个字母,想遍历查找出所有以这个关键词开头的文件,该怎么操作呢? 范例:单个查看 ...
- Spring MVC-从零开始-@ResponseBody(未完待续)
Spring MVC-从零开始-@ResponseBody(未完待续)
- node学习笔记(二)流和缓冲区
内容 视频 第四章内容 菜鸟教程服务器 //复制文件 function de(x) { console.log(x); } var fs=require('fs'); fs.mkdir('stuff' ...
- 无广告版本Flash player 一枚,需要的拿走~
无广告版本flashplayer,国内flashplayer已经被植入了广告,安装后不断的弹出广告使用体验很差,最开始还以为是电脑被恶意植入捆绑插件, 检查半天发现竟然是浏览器的flash playe ...
- Python——Pandas速查手册中文版
转自——http://blog.csdn.net/qq_33399185/article/details/60872853,非常感谢大神的整理! 还有图片版,转自——https://zhuanlan. ...
- asp.net core 3.0 更新简记
asp.net core 3.0 更新简记 asp.net core 3.0 更新简记 Intro 最近把活动室预约项目从 asp.net core 2.2 更新到了 asp.net core 3.0 ...
- 关于SpringBoot 1.x和2.x版本差别
有点小差别 基本上基于SpringBoot的代码不需要改动,但有些配置属性和配置类,可能要改动,改动原因是 配置和类的更新或者是改名一般正常的MVC,数据库访问这些都不需要改动,下面按照本书章节说明区 ...
- python语言程序设计基础(嵩天)第三章课后习题部分个人练习
p69: *题3.5: 源代码: (1)print(30-3**2+8//3**2*10) 答案:21 (2)print(3*4**2/8%5) 答案:1.0 (3)print(2** ...
- .NET GC垃圾回收器
GC垃圾回收器简介 全名: Garbage Collector 原理: 以应用程序的根(root)为基础,遍历应用程序堆(heap)上动态分配的所有对象,通过识别它们是否被引用来确定哪些对象是已经死亡 ...
- 【源码解析】自动配置的这些细节不知道,别说你会 springboot
spring-boot 相对于 spring,很重要的一个特点就是自动配置,使约定大于配置思想成功落地.xxx-spring-boot-starter 一系列引导器能够开箱即用,或者只需要很少的配置( ...