Python3.7 dataclass 介绍
Python3.7 加入了一个新的 module:dataclasses。可以简单的理解成“支持默认值、可以修改的tuple”( “mutable namedtuples with defaults”)。其实没什么特别的,就是你定义一个很普通的类,@dataclass 装饰器可以帮你生成 __repr__ __init__ 等等方法,就不用自己写一遍了。但是此装饰器返回的依然是一个 class,这意味着并没有带来任何不便,你依然可以使用继承、metaclass、docstring、定义方法等。
先展示一个 PEP 中举的例子,下面的这段代码(Python3.7):
|
1
2
3
4
5
6
7
8
9
|
@dataclass
class InventoryItem:
'''Class for keeping track of an item in inventory.'''
name: str
unit_price: float
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
|
@dataclass 会自动生成
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0) -> None:
self.name = name
self.unit_price = unit_price
self.quantity_on_hand = quantity_on_hand
def __repr__(self):
return f'InventoryItem(name={self.name!r}, unit_price={self.unit_price!r}, quantity_on_hand={self.quantity_on_hand!r})'
def __eq__(self, other):
if other.__class__ is self.__class__:
return (self.name, self.unit_price, self.quantity_on_hand) == (other.name, other.unit_price, other.quantity_on_hand)
return NotImplemented
def __ne__(self, other):
if other.__class__ is self.__class__:
return (self.name, self.unit_price, self.quantity_on_hand) != (other.name, other.unit_price, other.quantity_on_hand)
return NotImplemented
def __lt__(self, other):
if other.__class__ is self.__class__:
return (self.name, self.unit_price, self.quantity_on_hand) < (other.name, other.unit_price, other.quantity_on_hand)
return NotImplemented
def __le__(self, other):
if other.__class__ is self.__class__:
return (self.name, self.unit_price, self.quantity_on_hand) <= (other.name, other.unit_price, other.quantity_on_hand)
return NotImplemented
def __gt__(self, other):
if other.__class__ is self.__class__:
return (self.name, self.unit_price, self.quantity_on_hand) > (other.name, other.unit_price, other.quantity_on_hand)
return NotImplemented
def __ge__(self, other):
if other.__class__ is self.__class__:
return (self.name, self.unit_price, self.quantity_on_hand) >= (other.name, other.unit_price, other.quantity_on_hand)
return NotImplemented
|
引入dataclass的理念
Python 想简单的定义一种容器,支持通过的对象属性进行访问。在这方面已经有很多尝试了:
- 标准库的
collections.namedtuple - 标准库的
typing.NamedTuple - 著名的 attr 库
- 各种 Snippet,问题和回答等
那么为什么还需要 dataclass 呢?主要的好处有:
- 没有使用 BaseClass 或者 metaclass,不会影响代码的继承关系。被装饰的类依然是一个普通的类
- 使用类的 Fields 类型注解,用原生的方法支持类型检查,不侵入代码,不像 attr 这种库对代码有侵入性(要用 attr 的函数将一些东西处理)
dataclass 并不是要取代这些库,作为标准库的 dataclass 只是提供了一种更加方便使用的途径来定义 Data Class。以上这些库有不同的 feature,依然有存在的意义。
基本用法
dataclasses 的 dataclass 装饰器的原型如下:
|
1
|
def dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False)
|
很明显,这些默认参数可以控制是否生成魔术方法。通过本文开头的例子可以看出,不用加括号也可以调用。
通过 field 可以对参数做更多的定制化,比如默认值、是否参与repr、是否参与hash等。比如文档中的这个例子,由于 mylist 的缺失,就调用了 default_factory 。更多 field 能做的事情参考文档吧。
|
1
2
3
4
5
6
|
@dataclass
class C:
mylist: List[int] = field(default_factory=list)
c = C()
c.mylist += [1, 2, 3]
|
此外,dataclasses 模块还提供了很多有用的函数,可以将 dataclass 转换成 tuple、dict 等形式。话说我自己重复过很多这样的方法了……
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
@dataclass
class Point:
x: int
y: int
@dataclass
class C:
mylist: List[Point]
p = Point(10, 20)
assert asdict(p) == {'x': 10, 'y': 20}
c = C([Point(0, 0), Point(10, 4)])
assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
|
Hook init
自动生成的 __init__ 可以被 hook。很简单,自动生成的 __init__ 方法会调用 __post_init__
|
1
2
3
4
5
6
7
8
|
@dataclass
class C:
a: float
b: float
c: float = field(init=False)
def __post_init__(self):
self.c = self.a + self.b
|
如果想传给 __post_init__ 方法但是不传给 __init__ ,可以使用一个特殊的类型 InitVar
|
1
2
3
4
5
6
7
8
9
10
11
|
@dataclass
class C:
i: int
j: int = None
database: InitVar[DatabaseType] = None
def __post_init__(self, database):
if self.j is None and database is not None:
self.j = database.lookup('j')
c = C(10, database=my_database)
|
不可修改的功能
Python 没有 const 类似的东西,理论上任何东西都是可以修改的。如果非要说不能修改的实现呢,这里有个比较著名的实现。只有不到10行代码。
但是有了 dataclass ,可以直接使用 @dataclass(frozen=True) 了。然后装饰器会对 Class 添加上 __setattr__ 和 __delattr__ 。Raise 一个 FrozenInstanceError。缺点是会有一些性能损失,因为 __init__ 必须通过 object.__setattr__ 。
继承
对于有继承关系的 dataclass,会按照 MRO 的反顺序(从object开始),对于每一个基类,将在基类找到的 fields 添加到顺序的一个 mapping 中。所有的基类都找完了,按照这个 mapping 生成所有的魔术方法。所以方法中这些参数的顺序,是按照找到的顺序排的,先找到的排在前面。因为是先找的基类,所以相同 name 的话,后面子类的 fields 定义会覆盖基类的。比如文档中的这个例子:
|
1
2
3
4
5
6
7
8
9
|
@dataclass
class Base:
x: Any = 15.0
y: int = 0
@dataclass
class C(Base):
z: int = 10
x: int = 15
|
那么最后生成的将会是:
|
1
|
def __init__(self, x: int = 15, y: int = 0, z: int = 10):
|
注意 x y 的顺序是 Base 中的顺序,但是 C 的 x 是 int 类型,覆盖了 Base 中的 Any。
可变对象的陷阱
在前面的“基本用法”一节中,使用了 default_factory 。为什么不直接使用 [] 作为默认呢?
老鸟都会知道 Python 这么一个坑:将可变对象比如 list 作为函数的默认参数,那么这个参数会被缓存,导致意外的错误。详细的可以参考这里:Python Common Gotchas。
考虑到下面的代码:
|
1
2
3
4
5
|
@dataclass
class D:
x: List = []
def add(self, element):
self.x += element
|
将会生成:
|
1
2
3
4
5
6
7
8
|
class D:
x = []
def __init__(self, x=x):
self.x = x
def add(self, element):
self.x += element
assert D().x is D().x
|
这样无论实例化多少对象,x 变量将在多个实例之间共享。dataclass 很难有一个比较好的办法预防这种情况。所以这个地方做的设计是:如果默认参数的类型是 list dict 或 set ,就抛出一个 TypeError。虽然不算完美,但是可以预防很大一部分情况了。
如果默认参数需要是 list,那么就用上面提到的 default_factory 。
Python3.7 dataclass 介绍的更多相关文章
- Python3.7 dataclass使用指南
本文将带你走进python3.7的新特性dataclass,通过本文你将学会dataclass的使用并避免踏入某些陷阱. dataclass简介 dataclass的使用 定义一个dataclass ...
- 简明Python3教程 1.介绍
Python是少有的几种既强大又简单的编程语言.你将惊喜地发现通过使用Python即可轻松专注于解决问题而非和你所用的语言格式与结构. 下面是Python的官方介绍: Python is an eas ...
- 在python3.6下 发明一个类似python3.7 dataclass数据类,不用在 __init__中self.xx
虽然我用3.6,但我在2.7转3.6时候,把3.3 3.4 3.5 3.6的变化都看了一次,虽然已经忘了哪些变化.同时也关注3.7 3.8的变化,3.7中就有1个数据类印象深刻,因为之前在定义这种类时 ...
- 简明Python3教程 3.介绍
介绍 Python是少有的几种既强大又简单的编程语言.你将惊喜地发现通过使用Python即可轻松专注于解决问题而非和你所用的语言格式与结构. 下面是Python的官方介绍: Python is an ...
- python3.8 := and python3.7 dataclass
代码示例 from dataclasses import field,dataclass @dataclass class People: name :str =field(init="张三 ...
- Python3安装目录介绍
目录组织方式 关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构. 假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了: Foo/ |-- bin/ | ...
- Python3学习笔记 - 准备环境
前言 最近乘着项目不忙想赶一波时髦学习一下Python3.由于正好学习了Docker,并深深迷上了Docker,所以必须趁热打铁的用它来创建我们的Python3的开发测试环境.Python3的中文教程 ...
- Python2/3中的urllib库
urllib库对照速查表 Python2.X Python3.X urllib urllib.request, urllib.error, urllib.parse urllib2 urllib.re ...
- Linux下安装3.0以上的python
Linux下自带的python2.7是不建议删除的,很多系统软件依赖python2.7,但是现在我们学习python一般需要python3.0,下面介绍安装python3.0. 1.进入python官 ...
随机推荐
- 从零开始学java(二)类与对象
面向对象是把构成问题事务分解成各个对象,建立对象的目的不是为了完成一个步骤,而是为了描叙某个事物在整个解决问题的步骤中的行为. 类是对象的抽象,对象是类的具体实例. 1.构造一个类,让其拥有属性和方法 ...
- JQuery跳出each循环的方法
一.jquery each循环,要实现break和continue的功能: break----用return false; continue --用return ture; 二.jquery怎么跳出当 ...
- 2019.03.28 bzoj3595: [Scoi2014]方伯伯的Oj(splay+map+set)
传送门 题意简述: 给一个有优先级的nnn个人的序列,初始的时候第iii个人排名为iii,现在有mmm个操作,种类如下: 把编号为xxx的改成yyy,输出改前xxx的排名 把编号为xxx放到队首,输出 ...
- (30)3 ways to make better decisions — by thinking like a computer
https://www.ted.com/talks/tom_griffiths_3_ways_to_make_better_decisions_by_thinking_like_a_computer0 ...
- MySQL数据库(三)索引总结
一.什么是索引? 索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存. 如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录 ...
- spring aop 的代理工厂
参考 https://docs.spring.io/spring/docs/4.3.11.RELEASE/spring-framework-reference/htmlsingle/#aop-unde ...
- win7里linux虚拟机安装vmware tools(ubuntu12.04)
安装Vmware Tools工具 1.安装linux虚拟机(略) 2.虚拟机去启动,选择虚拟机à设置,“硬件”中选择CD/DVD(IDE),右侧选择“使用ISO镜像文件(M)” -- 文件选择vmw ...
- 【收藏】JS获取鼠标的X,Y坐标位置
JS的方法: <html> <head> <meta http-equiv="Content-Type" content="text/htm ...
- ssh 使用 sed 替换的时候,替换的字符串有单双引号的时候怎么用
线上有一个脚本需要 ssh 登录远程机,然后完成特定文件中的某个值,替换的字符中有单引号,所以需要特定的写法,才能成功 1).ssh 远程执行命令,替换字符串中有单引号( ' ) ssh zhuzi@ ...
- R_展示变量之间关系的图形
#绘制普通矩阵散点图 plot(dataframe) #绘制带有拟合直线,最佳拟合曲线和直方图的矩阵散点图 library(car) attach(dataframe) scatterplotMatr ...