http://codeforces.com/problemset/problem/794/D

题意:在一个国家有 n 座城市和一些双向边。这些城市被编号为 1 到 n。 一共有 m 条双线边,第 i条边连接城市 ui 和 vi。保证任意两个城市是连通的。

每个城市都有一个标签,第 i 个城市的标签为 xi。对于任意一对点 (u, v) ,如果这对点满足 |xu - xv| ≤ 1 则一定有一条边,否则一定没有。

现在我们想知道是否存在这样一种合法的标签方式。

显而易见的可以看出一个结论,就是如果一个点连出去的三个边互不连通,就是不可行的

不怎么显而易见甚至需要看一下题解才能发现的第二个结论,就是如果一个点和他连到的点组成的集合与另一个点和他连到的点组成的集合完全相同的话,一定存在一种标签方法使得他们的标签相同

因为这样可以使得这两个点对除了这两个点之外的点的限制最小。

将所有这样的点缩点之后,原本的图就变成了一条链,我们采用直接染色的方法去检查就可以了

对于第二个结论,产生的点集合,可以用图上的Hash来解决,奥妙重重。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = 3e5 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,K;
struct Edge{
int to,next;
}edge[maxn * ];
int head[maxn],tot;
ULL Hash[maxn];
ULL id[maxn];
int color[maxn];
bool vis[maxn],use[maxn * ];
void init(){
Mem(head,-);
tot = ;
}
void add(int u,int v){
edge[tot].next = head[u];
edge[tot].to = v;
head[u] = tot++;
}
void dfs(int x){
vis[x] = ;
for(int i = head[x]; ~i; i = edge[i].next){
int v = edge[i].to;
if(Hash[v] == Hash[x]) color[v] = color[x];
}
for(int i = head[x]; ~i; i = edge[i].next){
int v = edge[i].to;
if(!vis[v]){
if(!color[v]){
for(int j = color[x] - ; j <= color[x] + ; j ++){
if(!use[j]){
color[v] = j;
use[j] = ;
break;
}
}
}
dfs(v);
}
}
}
int main()
{
Sca2(N,M); init(); id[] = ;
For(i,,N) Hash[i] = id[i] = id[i - ] * ;
For(i,,M){
int u,v; Sca2(u,v);
add(u,v); add(v,u);
Hash[u] += id[v]; Hash[v] += id[u];
}
color[] = 3e5 + ; use[color[]] = ; vis[] = ;
dfs();
For(i,,N) if(!color[i]){puts("NO");return ;}
puts("YES");
For(i,,N) printf("%d ",color[i]);
#ifdef VSCode
system("pause");
#endif
return ;
}

codeforces794D dfs+图上hash的更多相关文章

  1. thinkphp3.2.2有预览的多图上传

    thinkphp3.2.2有预览的多图上传 整体思路 1 封装文件上传和图片上传的类文件 2 视图中添加相关JS和表单提交 3 控制器中添加上传文件的相关代码 一 2个class 文件 请上传到/Th ...

  2. Java企业微信开发_07_JSSDK多图上传

    一.本节要点 1.1可信域名 所有的JS接口只能在企业微信应用的可信域名下调用(包括子域名),可在企业微信的管理后台“我的应用”里设置应用可信域名.这个域名必须要通过ICP备案,不然jssdk会配置失 ...

  3. HDU 3249 Test for job (有向无环图上的最长路,DP)

     解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...

  4. 【学习笔记】有向无环图上的DP

    手动博客搬家: 本文发表于20180716 10:49:04, 原地址https://blog.csdn.net/suncongbo/article/details/81061378 首先,感谢以下几 ...

  5. 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划

    2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] ​ 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...

  6. [hdu5348]图上找环,删环

    http://acm.hdu.edu.cn/showproblem.php?pid=5348 题意:给一个无向图,现在要将其变成有向图,使得每一个顶点的|出度-入度|<=1 思路:分为两步,(1 ...

  7. 2021.11.14 CF1583E Moment of Bloom(LCA+图上构造)

    2021.11.14 CF1583E Moment of Bloom(LCA+图上构造) https://www.luogu.com.cn/problem/CF1583E 题意: She does h ...

  8. yii2组件之多图上传插件FileInput的详细使用

    作者:白狼 出处:http://www.manks.top/yii2_multiply_images.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连 ...

  9. [python]沪深龙虎榜数据导入通达信的自选板块,并标注于K线图上

    将沪深龙虎榜数据导入通达信的自选板块,并标注于K线图上 原理:python读取前一次处理完的计算5日后涨跌幅输出的csv文件 文件名前加"[paint]" 安照通达信的画图文件和板 ...

随机推荐

  1. 在线制作css动画——CSS animate

    熟悉CSS的人都知道,CSS可以实现很多漂亮的动画,特别是它的在线功能,能够帮助人们解决很多制作动画的效果.今天特别推荐一个在线CSS插件功能——cssanimate,这个最大的特色就是以图形界面方式 ...

  2. Nintex History in Form Table

    一.设置参数 二.调用WebService 三.For Each 调用 四.拼写HTML Table 结果: 特别提示:过滤人只要根据人来循环即可

  3. LAMP架构部署和动态网站环境的配置

    实验环境: 操作系统:centos 7.5 服务器IP:192.168.10.5 运行用户:root 连接工具:xshell工具 web环境:Linux+apache+php+mariadb(LAMP ...

  4. mysql语句-DDL语句

    SQL分类 1.DDL语句:数据定义语句,用来定义不同的数据段.数据库,表,列,索引等数据表对象,常用语句:create.drop.alter等. 2.DML语句:数据操作语句,用于添加.删除.更新和 ...

  5. 将自己的ubuntu18.04打包成镜像

    将自己的ubuntu18.04打包成镜像 2018年11月10日 10:40:06 舌耳 阅读数:1590 先下载remastersys wget ftp://ftp.gwdg.de/pub/linu ...

  6. Xml文件汉化后改变代码页

    源Xml文件代码页为ansi,汉化后要转换为UTF-8,在网上搜素了以下结果,但解释的不都清楚,我找了好一阵才找到相应的操作.   为防止自己以后忘了,补充如下: 经过这样的设置,生成的汉化xml文件 ...

  7. Go语言函数相关

    1.函数的声明定义 //func关键字 //getStudent函数名 //(id int, classId int) 参数列表 //(name string,age int) 返回值列表 func ...

  8. BZOJ1001 洛谷4001 [BJOI2006]狼抓兔子 题解

    题目 这个题目有多种解法,这个题也是一个比较经典的题了,正是因为他的多样的做法,这个题主要难在建图和优化,因为这是一个网格图,所以spfa肯定过不去,所以用最短路解法的话,只能用dij,而网络流也是要 ...

  9. 【XSY2679】修墙 最短路

    题目描述 有一个\((n+1)\times (m+1)\)的网格,每条边都有一个边权.有一些格子是城市.你要用一个环圈住所有城市,要求环上所有边的边权和最小.重合的边边权算多次.保证左上角\((1,1 ...

  10. 【BZOJ4944】【NOI2017】泳池 概率DP 常系数线性递推 特征多项式 多项式取模

    题目大意 有一个\(1001\times n\)的的网格,每个格子有\(q\)的概率是安全的,\(1-q\)的概率是危险的. 定义一个矩形是合法的当且仅当: 这个矩形中每个格子都是安全的 必须紧贴网格 ...