原文链接https://www.cnblogs.com/zhouzhendong/p/ZJOI2018Day2T2.html

题目传送门 - BZOJ5308

题目传送门 - LOJ2529

题目传送门 - 洛谷P4501

题意

  略。

题解

  首先这个题目名称用来形容 cly 太好了。

  考虑每一对 $(a_i,l_i)$ 对于答案的贡献。

  我们可以发现每一条这种路径能够更新的节点是连续的一段。于是我们考虑二分边界。

  设 x 为当前节点,我们当前二分到的节点为 y ,如果 x 不能更新节点 y ,那么,在区间 $[x,2y-x]$ 中必然存在一个点到 y 的最短路小于等于 x 到 y 的最短路。

  于是,我们可以利用差分思想维护两个 ST 表来分别得到两边的最短路。

  但是有一个特殊情况:

  一个点同时被左右更新。

  只需要特判就好了。

  这题细节好多啊。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
const int N=200005;
const LL INF=1LL<<57;
int n,m,w[N],Log[N];
LL x[N],s1[N][18],s2[N][18];
struct Node{
int a,L;
}v[N];
bool cmp(Node A,Node B){
return A.a<B.a;
}
LL query1(int L,int R){
if (L>R)
return INF;
int d=Log[R-L+1];
return min(s1[L+(1<<d)-1][d],s1[R][d]);
}
LL query2(int L,int R){
if (L>R)
return INF;
int d=Log[R-L+1];
return min(s2[L+(1<<d)-1][d],s2[R][d]);
}
int p[N];
LL l[N];
int main(){
Log[1]=0;
for (int i=2;i<N;i++)
Log[i]=Log[i>>1]+1;
n=read(),m=read();
for (int i=1;i<n;i++)
w[i]=read(),x[i+1]=x[i]+w[i];
while (m--){
int k=read();
for (int i=1;i<=k;i++)
v[i].a=read(),v[i].L=read();
sort(v+1,v+k+1,cmp);
for (int i=1;i<=k;i++)
p[i]=v[i].a,l[i]=v[i].L;
for (int i=1;i<=k;i++){
s1[i][0]=l[i]-x[p[i]];
s2[i][0]=l[i]+x[p[i]];
for (int j=1;j<18;j++){
s1[i][j]=s1[i][j-1];
s2[i][j]=s2[i][j-1];
if (i-(1<<(j-1))>0){
s1[i][j]=min(s1[i][j],s1[i-(1<<(j-1))][j-1]);
s2[i][j]=min(s2[i][j],s2[i-(1<<(j-1))][j-1]);
}
}
}
LL ans=0;
for (int i=1;i<=k;i++){
int now=p[i],R=now,L=now;
for (int j=17;j>=0;j--){
int t=R+(1<<j);
if (t>n)
continue;
int pL=i+1;
int pM1=upper_bound(p+1,p+k+1,t)-p-1;
int pM2=lower_bound(p+1,p+k+1,t)-p;
int pR=upper_bound(p+1,p+k+1,t*2-now)-p-1;
if (query1(pL,pM1)<=l[i]-x[now])
continue;
if (query2(pM2,pR)-x[t]<=l[i]+x[t]-x[now])
continue;
R=t;
}
for (int j=17;j>=0;j--){
int t=L-(1<<j);
if (t<=0)
continue;
int pR=i-1;
int pM1=lower_bound(p+1,p+k+1,t)-p;
int pM2=upper_bound(p+1,p+k+1,t)-p-1;
int pL=lower_bound(p+1,p+k+1,t*2-now)-p;
if (query2(pM1,pR)<=l[i]+x[now])
continue;
if (query1(pL,pM2)+x[t]<=l[i]+x[now]-x[t])
continue;
L=t;
}
ans+=R-L+1;
if (R<n){
R++;
int pR=lower_bound(p+1,p+k+1,R*2-now)-p;
if (p[pR]==R*2-now){
int pM1=upper_bound(p+1,p+k+1,R)-p-1;
int pM2=lower_bound(p+1,p+k+1,R)-p;
if (query1(i+1,pM1)>l[i]-x[now]
&&query2(pM2,pR-1)-x[R]>l[i]+x[R]-x[now]
&&l[i]+x[R]-x[now]==l[pR]+x[p[pR]]-x[R])
ans++;
}
}
}
printf("%lld\n",ans);
}
return 0;
}

  

ZJOI2018 胖 二分 ST表的更多相关文章

  1. BZOJ 5308 [ZJOI2018] Day2T2 胖 | 二分 ST表

    题目链接 LOJ 2529 BZOJ 5308 题解 这么简单的题 为什么考场上我完全想不清楚 = = 对于k个关键点中的每一个关键点\(a\),二分它能一度成为哪些点的最短路起点(显然这些点在一段包 ...

  2. 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)

    题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...

  3. 「ZJOI2018」胖(ST表+二分)

    「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...

  4. BZOJ4556:[TJOI\HEOI2016]字符串(后缀数组,主席树,二分,ST表)

    Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开箱 ...

  5. BZOJ3166 [Heoi2013]Alo 【可持久化trie树 + 二分 + ST表】

    题目 Welcome to ALO ( Arithmetic and Logistic Online).这是一个VR MMORPG , 如名字所见,到处充满了数学的谜题. 现在你拥有n颗宝石,每颗宝石 ...

  6. [BZOJ4310] 跳蚤 - 后缀数组,二分,ST表

    [BZOJ4310] 跳蚤 Description 首先,他会把串分成不超过 \(k\) 个子串,然后对于每个子串 \(S\) ,他会从 \(S\) 的所有子串中选择字典序最大的那一个,并在选出来的 ...

  7. HDU5726 GCD(二分 + ST表)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence of N(N≤100, ...

  8. BZOJ3473:字符串(后缀数组,主席树,二分,ST表)

    Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串. Output 一 ...

  9. BZOJ 3230 相似子串 | 后缀数组 二分 ST表

    BZOJ 3230 相似子串 题面 题解 首先我们要知道询问的两个子串的位置. 先正常跑一遍后缀数组并求出height数组. 对于每一个后缀suffix(i),考虑以i开头的子串有多少是之前没有出现过 ...

随机推荐

  1. PHPExcel导出数据时字段超过26列出错Invalid cell coordinate [1

    http://blog.csdn.net/dl425134845/article/details/46650961 以下是解决方案函数 /** *   方法名:    getExcel *   作用  ...

  2. 下载chrome插件和离线安装CRX文件的方法

    自从chrome网上应用店出来后无法下载插件,必须在线安装,安装后又自动把CRX删除,而且是那么的迅速...以下是下载离线插件包的方法:第一步: 每个Google Chrome扩展都有一个固定的ID, ...

  3. Linux/Ubuntu安装搜狗输入法

    零.你首先需要安装fcitx小企鹅输入法,相信绝大部分用linux的中国人都用这个输入法,安装fcitx后同时还能解决Sublime Text的中文输入问题. 安装fcitx输入法前首先要安装fcit ...

  4. Go append 省略号

    1 前言 Golang append加...用法缘由 2 代码 type Product struct { ID int64 `json:"id"` Name string `js ...

  5. 前端图片缓存之通过img标签加载GIF只能播放一次问题(转载)

    最近项目中要求再网页中插入一张gif图片,让用户每次到达该位置时动一次,所以我们就制作了一张只动一次的gif图片通过img标签引入.当用户进入该位置时,通过remove()清除图片然后重新append ...

  6. 放一点百度来的,常见的windowserror

    0操作成功完成.1功能错误.2系统找不到指定的文件.3系统找不到指定的路径.4系统无法打开文件.5拒绝访问.6句柄无效.7存储控制块被损坏.8存储空间不足,无法处理此命令.9存储控制块地址无效.10环 ...

  7. CentOS 7 安装JDK环境

    1.JDK下载地址:https://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html ...

  8. Python基础之面向过程编程

    要求:在文件里递归找到关于包含“Python”内容的文件的绝对路径并打印出来 #定义阶段 import os,time def init(func): #装饰器的作用是使下面的生成器初始化,yield ...

  9. laravel PC内部方法调用

    /** * [api 内部请求] * @author Foreach * @param string $method [请求方式] * @param string $url [地址] * @param ...

  10. lightoj1336 约数和

    /*sigma(n)的每一项都可以看成是个pi的[0,ei]等比数列求和公式,那么sigma(n)就是n所有正约数的和要求找到sigma(x)为奇数的个数1<=x<=n */ 看题解的.. ...