刚开始, 我以为两个点肯定是通过树上最短路径过去的, 无非是在两棵树之间来回切换, 这个可以用倍增 + dp

去维护它。 但是后来又发现, 它可以不通过树上最短路径过去, 我们考虑这样一种情况, 起点在奇树里面, 终点
在偶树里面, 然后这两个点最短路径里面点到对应点的距离都很大, 这种情况下我们就需要从别的地方绕过去, 这样

就不是走树上最短路径了, 但是如果我们将对应点的距离更新成最短距离, 上面这个倍增 + dp的方法就可行了, 所以

我们可以用最短路去更新对应点之间的距离, 将它变成最小值。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 3e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); int n, q, depth[N];
LL d[N], gg[N], dp[N][][][];
int f[N][];
vector<pair<int, PLL>> G[N];
vector<PLI> E[N]; void dfs(int u, int fa, PLL dis) {
depth[u] = depth[fa] + ;
if(u > ) {
f[u][] = fa;
dp[u][][][] = min(dis.fi, dis.se + d[u] + d[fa]);
dp[u][][][] = min(dis.se, dis.fi + d[u] + d[fa]);
dp[u][][][] = min(dis.fi + d[fa], dis.se + d[u]);
dp[u][][][] = min(dis.se + d[fa], dis.fi + d[u]);
for(int i = ; i < ; i++) f[u][i] = f[f[u][i - ]][i - ];
for(int i = ; i < ; i++) {
int v = f[u][i - ];
dp[u][][][i] = min(dp[u][][][i - ] + dp[v][][][i - ], dp[u][][][i - ] + dp[v][][][i - ]);
dp[u][][][i] = min(dp[u][][][i - ] + dp[v][][][i - ], dp[u][][][i - ] + dp[v][][][i - ]);
dp[u][][][i] = min(dp[u][][][i - ] + dp[v][][][i - ], dp[u][][][i - ] + dp[v][][][i - ]);
dp[u][][][i] = min(dp[u][][][i - ] + dp[v][][][i - ], dp[u][][][i - ] + dp[v][][][i - ]);
}
}
for(auto& e : G[u]) {
if(e.fi == fa) continue;
dfs(e.fi, u, e.se);
}
} int getLca(int u, int v) {
if(depth[u] < depth[v]) swap(u, v);
for(int i = ; i >= ; i--)
if(depth[f[u][i]] >= depth[v]) u = f[u][i];
if(u == v) return u;
for(int i = ; i >= ; i--)
if(f[u][i] != f[v][i]) u = f[u][i], v = f[v][i];
return f[u][];
} PLL calc(int u, int op1, int v) {
int dis = depth[u] - depth[v];
LL g[], tmp[];
g[op1] = ;
g[op1 ^ ] = d[u];
for(int i = ; i >= ; i--) {
if(dis >> i & ) {
tmp[] = g[], tmp[] = g[];
g[] = min(tmp[] + dp[u][][][i], tmp[] + dp[u][][][i]);
g[] = min(tmp[] + dp[u][][][i], tmp[] + dp[u][][][i]);
u = f[u][i];
}
}
return mk(g[], g[]);
} int main() {
scanf("%d", &n);
for(int i = ; i <= n; i++) scanf("%lld", &d[i]);
for(int i = ; i <= n; i++) {
int u, v; LL w1, w2;
scanf("%d%d%lld%lld", &u, &v, &w1, &w2);
G[u].push_back(mk(v, mk(w1, w2)));
G[v].push_back(mk(u, mk(w1, w2)));
E[u].push_back(mk(w1 + w2, v));
E[v].push_back(mk(w1 + w2, u));
}
priority_queue<PLI, vector<PLI>, greater<PLI> > que;
for(int i = ; i <= n; i++) {
gg[i] = d[i];
que.push(mk(d[i], i));
}
while(!que.empty()) {
int u = que.top().se;
LL val = que.top().fi;
que.pop();
if(val > gg[u]) continue;
for(auto& e : E[u]) {
if(gg[e.se] > val + e.fi) {
gg[e.se] = val + e.fi;
que.push(mk(gg[e.se], e.se));
}
}
}
for(int i = ; i <= n; i++) d[i] = gg[i];
dfs(, , mk(, ));
scanf("%d", &q);
while(q--) {
int u, v;
scanf("%d%d", &u, &v);
int op1 = (u & ) ? : ;
int op2 = (v & ) ? : ;
if(u & ) u = (u + ) >> ;
else u >>= ;
if(v & ) v = (v + ) >> ;
else v >>= ;
int Lca = getLca(u, v);
PLL disu = calc(u, op1, Lca);
PLL disv = calc(v, op2, Lca);
printf("%lld\n", min(disu.fi + disv.fi, disu.se + disv.se));
}
return ;
} /* */

Codeforces 1140G Double Tree 倍增 + dp的更多相关文章

  1. Codeforces 225C Barcode(矩阵上DP)

    题目链接:http://codeforces.com/contest/225/problem/C 题目大意: 给出一个矩阵,只有两种字符'.'和'#',问最少修改多少个点才能让每一列的字符一致,且字符 ...

  2. Codeforces 988F Rain and Umbrellas(DP)

    题目链接:http://codeforces.com/contest/988/problem/F 题目大意: 有三个整数a,n,m,a是终点坐标,给出n个范围(l,r)表示这块区域下雨,m把伞(p,w ...

  3. Problem - D - Codeforces Fix a Tree

    Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...

  4. Codeforces 68D - Half-decay Tree

    题意 有一颗高度为 \(h\) 的完全二叉树(即点数为 \(2^{h+1}-1\) ),有两种操作: add x y 给 \(x\) 点的权值加 \(y\) decay 一次衰变定义为选择一个叶子节点 ...

  5. Codeforces 834D - The Bakery(dp+线段树)

    834D - The Bakery 思路:dp[i][j]表示到第j个数为止分成i段的最大总和值. dp[i][j]=max{dp[i-1][x]+c(x+1,j)(i-1≤x≤j-1)},c(x+1 ...

  6. zoj 3649 lca与倍增dp

    参考:http://www.xuebuyuan.com/609502.html 先说题意: 给出一幅图,求最大生成树,并在这棵树上进行查询操作:给出两个结点编号x和y,求从x到y的路径上,由每个结点的 ...

  7. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  8. 洛谷 P1613 跑路 (倍增 + DP + 最短路)

    题目链接:P1613 跑路 题意 给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米.每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最 ...

  9. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

随机推荐

  1. 漏洞扫描工具Nessu的安装和简单使用

    一.软件介绍Nessus号称是世界上最流行的漏洞扫描程序,全世界有超过75000个组织在使用它.该工具提供完整的电脑漏洞扫描服务,并随时更新其漏洞数据库.Nessus不同于传统的漏洞扫描软件,Ness ...

  2. windows server 2008开启共享文件设置

    之前设置过共享文件,将共享文件映射成磁盘,重新去设置另外服务器的时候,又到网络上找,特此记录 设置网络共享需要开启的服务如下: 以下服务都相关,需要全部开启后才能保证共享正常:1,UPnP Devic ...

  3. T-SQL ORDER BY子句 排序方式

    MS SQL Server ORDER BY子句用于根据一个或多个列以升序或降序对数据进行排序. 默认情况下,一些数据库排序查询结果按升序排列. 语法 以下是ORDER BY子句的基本语法. SELE ...

  4. unit test

    1) State vs Behaviour Verificationhttps://manas.tech/blog/2009/04/30/state-vs-behaviour-verification ...

  5. Laravel 5.2--如何让表单提交错误,不清空?

    控制器 public function store(Request $request) { $validator = Validator::make($request->all(), [ 'Su ...

  6. c#获取鼠标坐标

    用Control.MousePosition获得当前鼠标的坐标CurrentPoint,使用Control.PointToClient方法,前面获得的CurrentPoint作为其参数,返回的Poin ...

  7. PID控制器开发笔记之十:步进式PID控制器的实现

    对于一般的PID控制系统来说,当设定值发生较大的突变时,很容易产生超调而使系统不稳定.为了解决这种阶跃变化造成的不利影响,人们发明了步进式PID控制算法. 1.步进式PID的基本思想 所谓步进式PID ...

  8. Oracle12c 从入门到精通(第二版) 闫红岩 金松河 编著

    声明:本文只是用于学习笔记使用.方便查询.若需要书本,请到书店购买. 本书封面 前言 第1章 Oracle数据库概述 1.1 Oracle数据库产品结构及组成 1.1.1 标准版 1.1.2 标准版 ...

  9. js获取url参数值,并解决中文乱码

    <script type="text/javascript"> function GetQueryString(name) { var reg = new RegExp ...

  10. css之操作属性

    1.文本 1.文本颜色:color 颜色属性被用来设置文字的颜色. 颜色是通过CSS最经常的指定: 十六进制值 - 如: #FF0000 一个RGB值 - 如: RGB(255,0,0) 颜色的名称 ...