hive 2.3.4 on spark 2.4.0

Hive on Spark provides Hive with the ability to utilize Apache Spark as its execution engine.

set hive.execution.engine=spark;

1 version

Hive on Spark is only tested with a specific version of Spark, so a given version of Hive is only guaranteed to work with a specific version of Spark. Other versions of Spark may work with a given version of Hive, but that is not guaranteed. Below is a list of Hive versions and their corresponding compatible Spark versions.

以上版本对应是测试过的,其他版本也可能可用,需要测试;

2 yarn

Instead of the capacity scheduler, the fair scheduler is required.  This fairly distributes an equal share of resources for jobs in the YARN cluster.

yarn-site.xml

<property>

<name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>

</property>

3 spark

$ export SPARK_HOME=...

Note that you must have a version of Spark which does not include the Hive jars. Meaning one which was not built with the Hive profile. If you will use Parquet tables, it's recommended to also enable the "parquet-provided" profile. Otherwise there could be conflicts in Parquet dependency.

不能直接使用现有的spark安装目录,一个是hive依赖,一个parquet依赖,这两个依赖很容易导致问题;

4 library

$ ln -s $SPARK_HOME/jars/scala-library-2.11.8.jar $HIVE_HOME/lib/scala-library-2.11.8.jar
$ ln -s $SPARK_HOME/jars/spark-core_2.11-2.0.2.jar $HIVE_HOME/lib/spark-core_2.11-2.0.2.jar
$ ln -s $SPARK_HOME/jars/spark-network-common_2.11-2.0.2.jar $HIVE_HOME/lib/spark-network-common_2.11-2.0.2.jar

Prior to Hive 2.2.0, link the spark-assembly jar to HIVE_HOME/lib

spark2之前的版本有spark-assembly.jar,直接将该jar link到HIVE_HOME/lib

5 hive

$ hive
hive> set hive.execution.engine=spark;

默认的spark.master=yarn,更多配置

set spark.master=<Spark Master URL>
set spark.eventLog.enabled=true;
set spark.eventLog.dir=<Spark event log folder (must exist)>
set spark.executor.memory=512m;
set spark.executor.instances=10;
set spark.executor.cores=1;
set spark.serializer=org.apache.spark.serializer.KryoSerializer;

以上配置可以像设置hive config一样直接执行,也可以放到hive-site.xml中,也可以放到HIVE_CONF_DIR中的spark-defaults.conf中

This can be done either by adding a file "spark-defaults.conf" with these properties to the Hive classpath, or by setting them on Hive configuration (hive-site.xml).

6 报错

hive执行sql报错:

FAILED: SemanticException Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create spark client

hive执行日志位于 /tmp/$user/hive.log

详细错误日志

2019-03-05 11:06:43 ERROR ApplicationMaster:91 - User class threw exception: java.lang.NoSuchFieldError: SPARK_RPC_SERVER_ADDRESS
java.lang.NoSuchFieldError: SPARK_RPC_SERVER_ADDRESS
at org.apache.hive.spark.client.rpc.RpcConfiguration.<clinit>(RpcConfiguration.java:47)
at org.apache.hive.spark.client.RemoteDriver.<init>(RemoteDriver.java:134)
at org.apache.hive.spark.client.RemoteDriver.main(RemoteDriver.java:516)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:678)

因为spark打包时加了hive依赖,尝试使用没有hive的包

https://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.4-without-hive.tgz

再执行,报parquet版本冲突

Caused by: java.lang.NoSuchMethodError: org.apache.parquet.schema.Types$MessageTypeBuilder.addFields([Lorg/apache/parquet/schema/Type;)Lorg/apache/parquet/schema/Types$BaseGroupBuilder;

只能编译了

1)spark 2.0-2.2

./dev/make-distribution.sh --name "hadoop2-without-hive" --tgz "-Pyarn,hadoop-provided,hadoop-2.7,parquet-provided"

得到spark-2.0.2-bin-hadoop2-without-hive.tgz

2)spark 2.3及以上

./dev/make-distribution.sh --name "hadoop2-without-hive" --tgz "-Pyarn,hadoop-provided,hadoop-2.7,parquet-provided,orc-provided"

得到spark-2.4.0-bin-hadoop2-without-hive.tgz

使用spark-2.0.2-bin-hadoop2-without-hive.tgz再执行,还有报错

2019-03-05T17:10:55,537 ERROR [901dc3cf-a990-4e8b-95ec-fcf6a9c9002c main] ql.Driver: FAILED: SemanticException Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create spark client.
org.apache.hadoop.hive.ql.parse.SemanticException: Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create spark client.

详细错误日志

2019-03-05T17:08:37,364 INFO [stderr-redir-1] client.SparkClientImpl: Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.fs.FSDataInputStream

缺少jar,直接从spark-2.0.0-bin-hadoop2.4-without-hive里拷贝

$ cd spark-2.0.2-bin-hadoop2-without-hive
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/hadoop-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/slf4j-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/log4j-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/guava-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/commons-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/protobuf-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/htrace-* jars/

这次ok了,执行sql输出

Query ID = hadoop_20190305180847_e8b638c8-394c-496d-a43e-26a0a17f9e18
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Spark Job = d5fea72c-c67c-49ec-9f4c-650a795c74c3
Running with YARN Application = application_1551754784891_0008
Kill Command = $HADOOP_HOME/bin/yarn application -kill application_1551754784891_0008

Query Hive on Spark job[1] stages: [2, 3]

Status: Running (Hive on Spark job[1])
--------------------------------------------------------------------------------------
STAGES ATTEMPT STATUS TOTAL COMPLETED RUNNING PENDING FAILED
--------------------------------------------------------------------------------------
Stage-2 ........ 0 FINISHED 275 275 0 0 0
Stage-3 ........ 0 FINISHED 1009 1009 0 0 0
--------------------------------------------------------------------------------------
STAGES: 02/02 [==========================>>] 100% ELAPSED TIME: 149.58 s
--------------------------------------------------------------------------------------
Status: Finished successfully in 149.58 seconds
OK

使用spark-2.4.0-bin-hadoop2-without-hive.tgz也没有问题;

参考:

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started

【原创】大数据基础之Hive(5)hive on spark的更多相关文章

  1. 【原创】大数据基础之Kudu(4)spark读写kudu

    spark2.4.3+kudu1.9 1 批量读 val df = spark.read.format("kudu") .options(Map("kudu.master ...

  2. CentOS6安装各种大数据软件 第八章:Hive安装和配置

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  3. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  4. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  5. 【原创】大数据基础之Hive(5)性能调优Performance Tuning

    1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.eng ...

  6. 【原创】大数据基础之Hive(3)最简绿色部署

    hadoop部署参考:https://www.cnblogs.com/barneywill/p/10428098.html 1 拷贝到所有服务器上并解压 # ansible all-servers - ...

  7. 了解大数据的技术生态系统 Hadoop,hive,spark(转载)

    首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各 ...

  8. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  9. 大数据入门第十一天——hive详解(一)入门与安装

    一.基本概念 1.什么是hive The Apache Hive ™ data warehouse software facilitates reading, writing, and managin ...

随机推荐

  1. 自学python 3.

    1.name = "aleX leNb" 1.a = name.strip() print(a) 2.a = name.lstrip('al') print(a) 3.a = na ...

  2. 函数的作用域、global与nonlocal

    global 表示不再使用局部局部作用域中的内容,而是改用全局作用域中的变量 a = 100 def func(): global a # 表示不再局部创建这个变量,而是直接使用这个全局的a a = ...

  3. 我的长大app开发教程第二弹:完成ContentFragment底部按钮

    在开始之前,先上一张效果图 突然发现有点知乎的味道...的确..知乎灰#989898,知乎蓝15,136,235(逃.... 1.学P图 想我大一的时候也用过不少Adobe的软件,昨天重新打开我的Ph ...

  4. 【C++】reference parameter-引用参数

    1.reference parameter 以下两个函数等效,只调用方式不同: 1> 1 int reset(int i){ 2 i = 13; 3 return i; 4 } 5 6 int ...

  5. TypeScript 快速学习

    https://learnxinyminutes.com/docs/zh-cn/typescript-cn/ https://www.tslang.cn/docs/handbook/basic-typ ...

  6. mysql数据库允许远程连接

    1.验证初始是否允许远程连接 由于本次虚拟机IP为192.168.2.120,因此我们执行 mysql -h 192.168.20.120 -P 3306 -u root -proot(备注:-pro ...

  7. springboot11-01-security入门

    场景: 有3个页面:首页.登录页.登录成功后的主页面,如下图: 如果没有登录,点击“去主页”,会跳转到登录页 如果已经登录,点击“去主页”,跳转到主页,显示“hello 用户名” 下面用springb ...

  8. 建立一个漂亮的PHP验证码类文件及调用方式

    //验证码类class ValidateCode { private $charset = 'abcdefghkmnprstuvwxyzABCDEFGHKMNPRSTUVWXYZ23456789';/ ...

  9. mysql 创建事件

    mysql 事件说明: 创建事件CREATE EVENT 的语法如下:CREATE EVENT[IF NOT EXISTS] ------------------------------------- ...

  10. 查看 Linux memory 内存占用

    linux 系统内存: 如果系统内存使用过高 就会产生 out of memory exception 现象: 通常 在mongo 默认服务运行资源是不受限制的.也会占用而同一系统运行的其他服务: 当 ...