hive 2.3.4 on spark 2.4.0

Hive on Spark provides Hive with the ability to utilize Apache Spark as its execution engine.

set hive.execution.engine=spark;

1 version

Hive on Spark is only tested with a specific version of Spark, so a given version of Hive is only guaranteed to work with a specific version of Spark. Other versions of Spark may work with a given version of Hive, but that is not guaranteed. Below is a list of Hive versions and their corresponding compatible Spark versions.

以上版本对应是测试过的,其他版本也可能可用,需要测试;

2 yarn

Instead of the capacity scheduler, the fair scheduler is required.  This fairly distributes an equal share of resources for jobs in the YARN cluster.

yarn-site.xml

<property>

<name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>

</property>

3 spark

$ export SPARK_HOME=...

Note that you must have a version of Spark which does not include the Hive jars. Meaning one which was not built with the Hive profile. If you will use Parquet tables, it's recommended to also enable the "parquet-provided" profile. Otherwise there could be conflicts in Parquet dependency.

不能直接使用现有的spark安装目录,一个是hive依赖,一个parquet依赖,这两个依赖很容易导致问题;

4 library

$ ln -s $SPARK_HOME/jars/scala-library-2.11.8.jar $HIVE_HOME/lib/scala-library-2.11.8.jar
$ ln -s $SPARK_HOME/jars/spark-core_2.11-2.0.2.jar $HIVE_HOME/lib/spark-core_2.11-2.0.2.jar
$ ln -s $SPARK_HOME/jars/spark-network-common_2.11-2.0.2.jar $HIVE_HOME/lib/spark-network-common_2.11-2.0.2.jar

Prior to Hive 2.2.0, link the spark-assembly jar to HIVE_HOME/lib

spark2之前的版本有spark-assembly.jar,直接将该jar link到HIVE_HOME/lib

5 hive

$ hive
hive> set hive.execution.engine=spark;

默认的spark.master=yarn,更多配置

set spark.master=<Spark Master URL>
set spark.eventLog.enabled=true;
set spark.eventLog.dir=<Spark event log folder (must exist)>
set spark.executor.memory=512m;
set spark.executor.instances=10;
set spark.executor.cores=1;
set spark.serializer=org.apache.spark.serializer.KryoSerializer;

以上配置可以像设置hive config一样直接执行,也可以放到hive-site.xml中,也可以放到HIVE_CONF_DIR中的spark-defaults.conf中

This can be done either by adding a file "spark-defaults.conf" with these properties to the Hive classpath, or by setting them on Hive configuration (hive-site.xml).

6 报错

hive执行sql报错:

FAILED: SemanticException Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create spark client

hive执行日志位于 /tmp/$user/hive.log

详细错误日志

2019-03-05 11:06:43 ERROR ApplicationMaster:91 - User class threw exception: java.lang.NoSuchFieldError: SPARK_RPC_SERVER_ADDRESS
java.lang.NoSuchFieldError: SPARK_RPC_SERVER_ADDRESS
at org.apache.hive.spark.client.rpc.RpcConfiguration.<clinit>(RpcConfiguration.java:47)
at org.apache.hive.spark.client.RemoteDriver.<init>(RemoteDriver.java:134)
at org.apache.hive.spark.client.RemoteDriver.main(RemoteDriver.java:516)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:678)

因为spark打包时加了hive依赖,尝试使用没有hive的包

https://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.4-without-hive.tgz

再执行,报parquet版本冲突

Caused by: java.lang.NoSuchMethodError: org.apache.parquet.schema.Types$MessageTypeBuilder.addFields([Lorg/apache/parquet/schema/Type;)Lorg/apache/parquet/schema/Types$BaseGroupBuilder;

只能编译了

1)spark 2.0-2.2

./dev/make-distribution.sh --name "hadoop2-without-hive" --tgz "-Pyarn,hadoop-provided,hadoop-2.7,parquet-provided"

得到spark-2.0.2-bin-hadoop2-without-hive.tgz

2)spark 2.3及以上

./dev/make-distribution.sh --name "hadoop2-without-hive" --tgz "-Pyarn,hadoop-provided,hadoop-2.7,parquet-provided,orc-provided"

得到spark-2.4.0-bin-hadoop2-without-hive.tgz

使用spark-2.0.2-bin-hadoop2-without-hive.tgz再执行,还有报错

2019-03-05T17:10:55,537 ERROR [901dc3cf-a990-4e8b-95ec-fcf6a9c9002c main] ql.Driver: FAILED: SemanticException Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create spark client.
org.apache.hadoop.hive.ql.parse.SemanticException: Failed to get a spark session: org.apache.hadoop.hive.ql.metadata.HiveException: Failed to create spark client.

详细错误日志

2019-03-05T17:08:37,364 INFO [stderr-redir-1] client.SparkClientImpl: Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.fs.FSDataInputStream

缺少jar,直接从spark-2.0.0-bin-hadoop2.4-without-hive里拷贝

$ cd spark-2.0.2-bin-hadoop2-without-hive
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/hadoop-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/slf4j-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/log4j-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/guava-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/commons-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/protobuf-* jars/
$ cp ../spark-2.4.0-bin-hadoop2.6/jars/htrace-* jars/

这次ok了,执行sql输出

Query ID = hadoop_20190305180847_e8b638c8-394c-496d-a43e-26a0a17f9e18
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Spark Job = d5fea72c-c67c-49ec-9f4c-650a795c74c3
Running with YARN Application = application_1551754784891_0008
Kill Command = $HADOOP_HOME/bin/yarn application -kill application_1551754784891_0008

Query Hive on Spark job[1] stages: [2, 3]

Status: Running (Hive on Spark job[1])
--------------------------------------------------------------------------------------
STAGES ATTEMPT STATUS TOTAL COMPLETED RUNNING PENDING FAILED
--------------------------------------------------------------------------------------
Stage-2 ........ 0 FINISHED 275 275 0 0 0
Stage-3 ........ 0 FINISHED 1009 1009 0 0 0
--------------------------------------------------------------------------------------
STAGES: 02/02 [==========================>>] 100% ELAPSED TIME: 149.58 s
--------------------------------------------------------------------------------------
Status: Finished successfully in 149.58 seconds
OK

使用spark-2.4.0-bin-hadoop2-without-hive.tgz也没有问题;

参考:

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started

【原创】大数据基础之Hive(5)hive on spark的更多相关文章

  1. 【原创】大数据基础之Kudu(4)spark读写kudu

    spark2.4.3+kudu1.9 1 批量读 val df = spark.read.format("kudu") .options(Map("kudu.master ...

  2. CentOS6安装各种大数据软件 第八章:Hive安装和配置

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  3. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  4. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  5. 【原创】大数据基础之Hive(5)性能调优Performance Tuning

    1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.eng ...

  6. 【原创】大数据基础之Hive(3)最简绿色部署

    hadoop部署参考:https://www.cnblogs.com/barneywill/p/10428098.html 1 拷贝到所有服务器上并解压 # ansible all-servers - ...

  7. 了解大数据的技术生态系统 Hadoop,hive,spark(转载)

    首先给出原文链接: 原文链接 大数据本身是一个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你能够把它比作一个厨房所以须要的各种工具. 锅碗瓢盆,各 ...

  8. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  9. 大数据入门第十一天——hive详解(一)入门与安装

    一.基本概念 1.什么是hive The Apache Hive ™ data warehouse software facilitates reading, writing, and managin ...

随机推荐

  1. vue项目中引用jquery

    1.使用npm安装 npm i jquery --S //jquery要小写 2.在package.json文件dependencies里面加入jq 3.在build文件夹的webpack.base. ...

  2. while应用和函数学习

    # ******************************练习****************************# 在控制台中获取两个整数,作为循环开始和结束的点'''a = int(in ...

  3. 使用 CROSS APPLY 与 OUTER APPLY 连接查询

    Ø  前言 日常开发中遇到多表查询时,首先会想到 INNER JOIN 或 LEFT OUTER JOIN 等等,但是这两种查询有时候不能满足需求.比如,左表一条关联右表多条记录时,我需要控制右表的某 ...

  4. 什么是CRUD

    CRUD是指在做计算处理时的增加(Create).读取查询(Retrieve).更新(Update)和删除(Delete)几个单词的首字母简写.主要被用在描述软件系统中数据库或者持久层的基本操作功能.

  5. MVC中的分部视图

    背景: 项目的工期马上就要到了,由于后台封装的很好,我们只需要用心熟悉框架,接下来后台的工作就是简单的代码工作了.原本以为最困难的时期已经过去,可没想到前台才是最困难的. B/S的基础十分薄弱,加上B ...

  6. 【LeetCode】335. Self Crossing(python)

    Problem:You are given an array x of n positive numbers. You start at point (0,0) and moves x[0] metr ...

  7. springboot项目怎么部署到外部tomcat

    spring-boot项目中,默认提供内嵌的tomcat,所以打包直接生成jar包,用Java -jar命令就可以启动. 但是也有一定的需求,会使用外部tomcat来部署项目.下面来看: 1.新建项目 ...

  8. linux 扩展根分区

    参考链接:  http://blog.51cto.com/lubcdc/1763133

  9. linux 进程间同步互斥

    参考链接: https://www.oschina.net/code/snippet_237505_8646 http://www.cnblogs.com/xilentz/archive/2012/1 ...

  10. linux 文件搜索命令