题目大意

  问你有多少个由\(n\)个数组成的,逆序对个数为\(k\)的排列。

  \(n,k\leq 1000\)

题解

  我们考虑从小到大插入这\(n\)个数。

  设当前插入了\(i\)个数,插入下一个数可以形成\(0,1,\ldots,i-1\)个逆序对。

\[f_{i,j}=\sum_{k=j-i+1}^jf_{i-1,k}
\]

  用前缀和优化即可。

  时间复杂度:\(O(nk)\)

  UPD:这个问题可以做到\(O(n\log n)\)(FFT)或\(O(n\sqrt n)\)(五边形数定理)。(\(nk\)同阶)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int f[1010][1010];
int s[1010][1010];
int p=10000;
int main()
{
// open("bzoj2143");
int n,k;
scanf("%d%d",&n,&k);
f[0][0]=1;
int i,j;
for(i=0;i<=k;i++)
s[0][i]=1;
for(i=1;i<=n;i++)
for(j=0;j<=k;j++)
{
f[i][j]=s[i-1][j];
if(j-i+1>=1)
f[i][j]=(f[i][j]-s[i-1][j-i])%p;
s[i][j]=f[i][j];
if(j>=1)
s[i][j]=(s[i][j]+s[i][j-1])%p;
}
int ans=f[n][k];
ans=(ans+p)%p;
printf("%d\n",ans);
return 0;
}

【BZOJ2431】【HAOI2009】逆序对数列 DP的更多相关文章

  1. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  2. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  3. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

  4. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  5. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  6. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  7. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  8. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  9. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  10. bzoj2431: [HAOI2009]逆序对数列

    dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...

随机推荐

  1. Python-类的继承与派生

    python中类的继承分为:单继承和多继承 class ParentClass1: #定义父类 pass class ParentClass2: #定义父类 pass class SubClass1( ...

  2. 一种简单有效的VBA源代码加密办法,支持64位宿主,适用于大部分VBA代码加密

    原始出处:http://www.cnblogs.com/Charltsing/p/EncryptVBACode.html VBA代码加密是个老生常谈的问题,自从本人的VBA Dumper发布之后,在O ...

  3. 如何优化Docker储存

    大家在使用Docker的过程中,有没有想过,Docker在本地存储镜像时把文件存储在哪里了呢?有没有对文件的总大小做一定的限制呢?能不能调整本地存储的位置及总限制大小呢?今天,我们就从这些问题入手,来 ...

  4. 【转】Restful是什么

    REST的概念是什么 维基百科  表现层状态转换(REST,英文:Representational State Transfer)是Roy Thomas Fielding博士于2000年在他的博士论文 ...

  5. 关于百度地图API和jqGrid踩到的坑

    1.百度地图重新标记问题 var map = new BMap.Map("map"); ...... var marker = new BMap.Marker(point); // ...

  6. 调整分区大小 转载--------------http://blog.csdn.net/perfectzq/article/details/73606119

    centos7重新调整分区大小 centos 7 调整 root 和 home 的容量大小 查看磁盘的空间大小: df -h  备份/home : cp -r /home/ homebak/ 卸载​  ...

  7. Could not render e, see the console.

    错误截图: 解决: 在application.properties中开启swagger swagger2.enable=true

  8. Alertmanager 安装(k8s报警)

    一.下载Alertmanager https://prometheus.io/download/ wget https://github.com/prometheus/alertmanager/rel ...

  9. 部署ingress及使用

    一.下载yaml文件 wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/master/deploy/mandatory.y ...

  10. python数据结构与算法第十一天【希尔排序】

    1.希尔排序的原理 2.代码实现 def shell_sort(alist): n = len(alist) # 初始步长 gap = n / 2 while gap > 0: # 按步长进行插 ...