【cf842C】 Ilya And The Tree(dfs、枚举因子)
题意
给一棵树求每个点到根的路上允许修改一个为0,gcd的最大值。
题解
g是从根到当前点允许修改的最大gcd,gs为不修改的最大gcd。枚举当前点的因子,更新路径上每个因子出现次数,回溯时减去。并用这个因子更新答案。另外当前点修改为0时,还要用父节点的gs更新答案。复杂度\(O(n\sqrt n)\)
代码
const int N=201000;
int n;
int a[N];
int u,v;
VI e[N];
int g[N],gs[N];
int p[N];
void dfs(int x,int fa,int dep){
for(int i=1;(ll)i*i<=a[x];++i)if(a[x]%i==0){
++p[i];if(i*i!=a[x])++p[a[x]/i];
if(p[i]>=dep-1) g[x]=max(g[x],i);
if(p[a[x]/i]>=dep-1) g[x]=max(g[x],a[x]/i);
}
g[x]=max(gs[fa],g[x]);
gs[x]=__gcd(a[x],gs[fa]);
for(auto &v:e[x])if(v!=fa)
dfs(v,x,dep+1);
for(int i=1;(ll)i*i<=a[x];++i)if(a[x]%i==0){
--p[i];if(i*i!=a[x])--p[a[x]/i];
}
}
int main() {
while(~scanf("%d",&n)){
mem(g,0);mem(gs,0);
rep(i,1,n+1)scanf("%d",a+i),e[i].clear();
rep(i,0,n-1)scanf("%d%d",&u,&v),e[u].pb(v),e[v].pb(u);
g[0]=gs[0]=a[1];
dfs(1,0,1);
rep(i,1,n+1)printf("%d%c",g[i],i==n?'\n':' ');
}
return 0;
}
【cf842C】 Ilya And The Tree(dfs、枚举因子)的更多相关文章
- HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)
想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...
- HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)
Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- CF842C Ilya And The Tree
思路: 1. 如果根节点是0,那么可以通过一次dfs计算出所有节点的最大值. 2. 如果根节点不是0,那么其余各点的最大值一定是根节点的一个因子.首先计算出根节点的所有因子.在dfs到一个深度为d的节 ...
- hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树
#include <stdio.h> #include <set> #include <string.h> #include <algorithm> u ...
- C. Ilya And The Tree 树形dp 暴力
C. Ilya And The Tree 写法还是比较容易想到,但是这么暴力的写法不是那么的敢写. 就直接枚举了每一个点上面的点的所有的情况,对于这个点不放进去特判一下,然后排序去重提高效率. 注意d ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
- Codeforces Round #430 (Div. 2) C. Ilya And The Tree
地址:http://codeforces.com/contest/842/problem/C 题目: C. Ilya And The Tree time limit per test 2 second ...
- HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...
- Codeforces 842C--Ilya And The Tree(dfs+树)
原题链接:http://codeforces.com/contest/842/problem/C 题意:一个以1为根节点的树,每个节点有一个值ai,定义美丽度:从根节点到这个节点的路径上所有ai的gc ...
随机推荐
- 如何优化Docker储存
大家在使用Docker的过程中,有没有想过,Docker在本地存储镜像时把文件存储在哪里了呢?有没有对文件的总大小做一定的限制呢?能不能调整本地存储的位置及总限制大小呢?今天,我们就从这些问题入手,来 ...
- SpringMVC controller 时间 T
Spring MVC 之 处理Date类型 - carl.zhao的专栏 - CSDN博客https://blog.csdn.net/u012410733/article/details/727730 ...
- js原生实现div渐入渐出
jq对渐入渐出进行封装,简单的使用连个方法就可以实现.fadeIn(),fadeOut();如果我们界面没有使用jq那么原生怎么实现呢? 我们讲解一下,这个原理.当我们要实现渐入的时候,首先是让隐藏的 ...
- [转帖]整理:Windows系统下的奇技淫巧大汇总
整理:Windows系统下的奇技淫巧大汇总 https://blog.csdn.net/bat67/article/details/76381357 Win+home Crtl+home 还有 Win ...
- Linux基础学习笔记1
MBR分区 主分区: 1-4,一块硬盘最多四个主分区,对主机必须有,主区可以格式化ntfs,存数据: 扩展分区:1-4,一块硬盘最多一个扩展分区,可以没有扩展分区,划分更小的单元,即逻辑分区: 逻辑分 ...
- linux audit审计(2)--audit启动
参考:https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec- ...
- 莫烦keras学习自修第二天【backend配置】
keras的backend包括tensorflow和theano,tensorflow只能在macos和linux上运行,theano可以在windows,macos及linux上运行 1. 使用配置 ...
- python设计模式第五天【单例模式】
1. 定义 一个类只有一个实例,提供访问该实例的全局方法 2.应用场景 (1)多线程之间共享对象资源 (2)整个程序空间中的全局变量,共享资源 (3)大规模程序的节省创建对象的时间 3.代码实现(使用 ...
- 如何在Mac系统安装MySQL
方法一: (1)使用brew install mysql (2)使用mysql -uroot连接时报错: Authentication plugin 'caching_sha2_password' c ...
- solr配置ik中文分词(二)
上一篇文章主要介绍了solr的安装与配置,这篇文章主要记录如何使用ik分词器对中文进行分词. 步骤: 1.下载ik分词jar包:ik-analyzer-solr5-5.x.jar. 2.将下载的jar ...