题目大意

  有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数。你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和。请你对于每种可能的总价值,求出有多少种选择方案。

  选\(2\)把斧头时,\((a,b)\)和\((b,a)\)视为一种方案。选\(3\)把斧头时,\((a,b,c),(b,c,a),(c,a,b),(c,b,a),(b,a,c),(a,c,b)\)视为一种方案。

  \(m\leq 40000\).

题解

  考虑生成函数。

​ 设\(X\)是每种斧头取一个的生成函数,\(Y\)是每种斧头取两个的生成函数,\(Z\)是每种斧头取三个的生成函数,\(A\)是只取一个斧头的答案的生成函数,\(B\)是取两个斧头的答案的生成函数,\(C\)是取三个斧头的答案的生成函数。

  容斥一下。

\[A=X\\
B=\frac{X^2-Y}2\\
C=\frac{X^3-3XY+2Z}6
\]

  我来讲解一下第三个式子

  下文中第一项代表\(X^3\),第二项代表\(XY\),第三项代表\(Z\)

  对于方案\((a,a,a)\),会在第一项中出现\(1\)次,在第二项中出现\(3\)次,在第三项中出现\(1\)次。

  对于方案\((a,a,b)\),会在第一项中出现\(3\)次,在第二项中出现\(1\)次,在第三项中出现\(0\)次。

  对于方案\((a,b,c)\),会在第一项中出现\(6\)次,在第二项中出现\(0\)次,在第三项中出现\(0\)次。

  这样\((a,a,a)\)和\((a,a,b)\)的贡献就会全部被消掉,所以答案是对的。

  然后用FFT加速。

  时间复杂度:\(O(m\log m)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double pi=acos(-1);
int n=131072;
struct cp
{
double x,y;
cp(double a=0,double b=0)
{
x=a;
y=b;
}
};
cp operator +(cp a,cp b){return cp(a.x+b.x,a.y+b.y);}
cp operator -(cp a,cp b){return cp(a.x-b.x,a.y-b.y);}
cp operator *(cp a,cp b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
cp operator *(cp a,double b){return cp(a.x*b,a.y*b);}
cp operator /(cp a,double b){return cp(a.x/b,a.y/b);}
cp a[200010];
cp b[200010];
cp c[200010];
cp w1[200010];
cp w2[200010];
int rev[200010];
void fft(cp *a,int t)
{
int i,j,k;
cp w,wn,u,v;
for(i=0;i<n;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=n;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<n;j+=i)
{
w=cp(1,0);
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w;
a[k]=u+v;
a[k+i/2]=u-v;
w=w*wn;
}
}
}
if(t==-1)
for(i=0;i<n;i++)
a[i]=a[i]/n;
}
int main()
{
int i;
for(i=2;i<=n;i<<=1)
{
w1[i]=cp(cos(2*pi/i),sin(2*pi/i));
w2[i]=cp(cos(2*pi/i),-sin(2*pi/i));
}
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n/2:0);
int m;
scanf("%d",&m);
int x;
for(i=1;i<=m;i++)
{
scanf("%d",&x);
a[x].x+=1;
b[2*x].x+=1;
c[3*x].x+=1;
}
fft(a,1);
fft(b,1);
fft(c,1);
for(i=0;i<n;i++)
a[i]=a[i]+(a[i]*a[i]-b[i])/2+(a[i]*a[i]*a[i]-a[i]*b[i]*3+c[i]*2)/6;
fft(a,-1);
for(i=0;i<n;i++)
{
ll s=round(a[i].x);
if(s>0)
printf("%d %lld\n",i,s);
}
return 0;
}

【BZOJ3771】Triple 生成函数 FFT 容斥原理的更多相关文章

  1. BZOJ3771 Triple(FFT+容斥原理)

    思路比较直观.设A(x)=Σxai.先把只选一种的统计进去.然后考虑选两种,这个直接A(x)自己卷起来就好了,要去掉选同一种的情况然后除以2.现在得到了选两种的每种权值的方案数,再把这个卷上A(x). ...

  2. 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)

    传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...

  3. 【BZOJ3771】Triple 生成函数+FFT

    [BZOJ3771]Triple Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: “这把斧头,是不是你的?” 樵夫一看 ...

  4. bzoj 3771: Triple【生成函数+FFT+容斥原理】

    瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...

  5. BZOJ 3771: Triple(生成函数 FFT)

    Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 911  Solved: 528[Submit][Status][Discuss] Description ...

  6. SPOJ Triple Sums(FFT+容斥原理)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  7. 【bzoj3771】Triple FFT+容斥原理

    题目描述 樵夫的每一把斧头都有一个价值,不同斧头的价值不同.总损失就是丢掉的斧头价值和. 他想对于每个可能的总损失,计算有几种可能的方案. 注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视 ...

  8. loj6570 毛毛虫计数(生成函数FFT)

    link 巨佬olinr的题解 <-- olinr很强 考虑生成函数 考虑直径上点数>=4的毛毛虫的直径,考虑直径中间那些节点以及他上面挂的那些点的EGF \(A(x)=\sum_{i\g ...

  9. The Preliminary Contest for ICPC Asia Shanghai 2019 C Triple(FFT+暴力)

    The Preliminary Contest for ICPC Asia Shanghai 2019 C Triple(FFT+暴力) 传送门:https://nanti.jisuanke.com/ ...

随机推荐

  1. Python编码与变量

    (一)Python执行的方式 Window: 在CMD里面,使用 Python + 相对路径/绝对路径 在解释器里面,直接输入,一行代码一行代码的解释 Linux: 明确地指出用Python解释器来执 ...

  2. ElasticSearch 分组查询的几个例子

    facets接口可以根据query返回统计数据,其中的 terms_stats 是分组统计,根据key的情况返回value的统计数据,类似group by的意思. "terms_stats& ...

  3. IOS-43-导航栏标题navigationItem.title不能改变颜色的两种解决方法

    IOS-43-导航栏标题navigationItem.title不能改变颜色的两种解决方法 IOS-43-导航栏标题navigationItem.title不能改变颜色的两种解决方法 两种方法只是形式 ...

  4. How To: Capture Android & iOS Traffic with Fiddler

    How To: Capture iOS Traffic with Fiddlerhttps://www.telerik.com/blogs/how-to-capture-ios-traffic-wit ...

  5. Proper usage of Java -D command-line parameters

    https://stackoverflow.com/questions/5045608/proper-usage-of-java-d-command-line-parameters https://c ...

  6. MySQL数据库性能优化思路与解决方法(一转)

     1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越 小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设 ...

  7. [服务器]Gartner:2018年第四季度全球服务器收入增长17.8% 出货量增长8.5%

    Gartner:2018年第四季度全球服务器收入增长17.8% 出货量增长8.5% Gartner 是不是也是花钱买榜的主啊.. 简单看了一下 浪潮2018Q4的营收18亿刀 (季度营收110亿人民币 ...

  8. 下拉框插件select2的使用

    它的优点有: 样式还算好看,支持多选,支持索搜 下面来介绍下select2的用法 1.最简单的用法 只需要加载css和js即可使用 <select name="" id=&q ...

  9. object-fit 属性的用法介绍

    这个要在宽,高都是100%的情况下才能提现 object-fit 属性的用法介绍 fill(不保持纵横比缩放图片,使图片完全适应) contain(保持纵横比缩放图片,使图片的长边能完全显示出来) c ...

  10. centos 6.5 查看时区和设置时区

    centos6.x 和centos7.x在时区方面有点差距,本文是针对centos6.x进行介绍. 其实在我的一个博文里,在安装系统的时候就可以进行时区的设置,本文介绍的是用命令进行时区查看和设置. ...