00 问题

00-1 描述

对给定高度为n的一个整数三角形,找出从顶部到底部的最小路径和。每个整数只能向下移动到与之相邻的整数。

找到一个一样的力扣题:120. 三角形最小路径和 - 力扣(LeetCode) (leetcode-cn.com)

示例1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
  2
 3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
   
示例2:
输入:triangle = [[-10]]
输出:-10

00-2 提示:

1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-104 <= triangle[i][j] <= 104

01 思路

想用动态规划写出来,重点在于状态转移方程。

将等腰三角形抽象为等腰直角三角形,如下

  0 1 2 3
0 2
1 3 4
2 6 5 7
3 8 3 9 2

加上下标化的序列,我们就可以用二维数组dp来考虑。dp是用来存储到i,j位置后用到的最短路径长度,比如dp[2] [2]=2+4+7=13

定义一个起点:

dp[0][0] = a[0][0];

三种情况:

  1. 三角形左路,在直角图里就是第一列,满足:

    dp[i][0]=dp[i-1][0];
  2. 三角形右路,在直角图里是对角线,满足:

    dp[i][i]=dp[i-1][i-1]+a[i][i]
  3. 普通位置

    dp[i][j]=min(dp[i-1][j-1],dp[i-1][j])+a[i][j];

这样程序就很好写了。就是往dp数组里填数就行,最后筛出最后一行的最小值就行。

02 代码

class Solution {
public:
   int minimumTotal(vector<vector<int>>& triangle) {
       int len = triangle.size();
       int dp[200][200]={0};
       dp[0][0]=triangle[0][0];
       for(int i=1;i<len;i++){
           dp[i][0] = dp[i-1][0]+triangle[i][0];
      }
       for(int i=1;i<len;i++){
           dp[i][i] = triangle[i][i]+dp[i-1][i-1];
      }
       for(int i=2;i<len;i++){
           for(int j=1;j<i;j++){
               dp[i][j] = triangle[i][j]+min(dp[i-1][j], dp[i-1][j-1]);
          }
      }
       //填充dp
       //下面筛选路径最短
       int ans = dp[len-1][0];
       for(int j = 1;j < len;j++){
           if(dp[len-1][j]<ans){
               ans = dp[len-1][j];
          }
      }
       return ans;
  }
};

03 升级版--记录路径

03-1 思路

如果要记下路径,需要再来一个二维数组pre来记录坐标为i,j的点的前一个节点。那么如何记录呢?我们看一下:

  • (i,i)的前一个节点就是(i-1,i-1);

  • (i,j)的前一个节点是(i-1,j)或者(i-1,j-1);

  • (i,0)的前一个节点是(i-1,0)。

容易从这些情况总结出,上一节点一定为i-1,只需记录j的值即可。故我们在pre二维数组里记录的就是当前节点的前一节点的j值。

记录之后,我们还需要输出这个最小路径。怎么输出呢?

我们在前一问题的基础上得到最后行的最小值的列值后,将它返回主控函数,并用它作为参数给路径输出函数Disppath。

输出方法为:

  • 对于当前节点,入栈,查它的pre数组值,更新,继续该操作,直到完成。

    更新操作为:

     path.push_back(a[i][k]);
    k=pre[i][k];
  • 逐个出栈。

03-2 代码

//三角形最小路径
#include<stdio.h>
#include<vector>
#include<string.h>
using namespace std;
#define MAXN 100
int a[MAXN][MAXN];//三角形
int n;//高度
int ans = 0;//应求的路径长度
int dp[MAXN][MAXN];
int pre[MAXN][MAXN];//前驱结点
//根据状态转移方程,只记录列号即可
int Search(){
   int i,j;
   dp[0][0] = a[0][0];
   for(i=1;i<n;i++){
       dp[i][0]=dp[i-1][0]+a[i][0];
       pre[i][0]=i-1;
  }
   for(i=1;i<n;i++){
       dp[i][i]=dp[i-1][i-1]+a[i][i];
       pre[i][i]=i-1;
  }
   for(i=2;i<n;i++){
       for(j=1;j<i;j++){
           if(dp[i-1][j-1]<dp[i-1][j]){
               dp[i][j]=dp[i-1][j-1]+a[i][j];
               pre[i][j]=j-1;
          }
           else{
               dp[i][j]=dp[i-1][j]+a[i][j];
               pre[i][j]=j;          
          }
      }
  }
   ans = dp[n-1][0];
   int k=0;
   for ( j = 1; j < n; j++)
  {
       if(ans>dp[n-1][j]){
           ans = dp[n-1][j];
           k=j;
      }
  }
   return k;
}
void Disppath(int k){
   int i=n-1;
   vector<int>path;//路径节点
   while(i>=0){
       path.push_back(a[i][k]);
       k=pre[i][k];
       i--;
  }
   vector<int>::reverse_iterator it;
   for(it=path.rbegin();it!=path.rend();++it){
       printf("%d ",*it);
  }
   printf("\n");
}

int main(){
   int k;//k行k列的三角形
   memset(pre, 0, sizeof(pre));
   memset(dp, 0, sizeof(dp));
   scanf("%d",&n);
   for(int i=0;i<n;i++){
       for(int j=0;j<=i;j++){
           scanf("%d",&a[i][j]);
      }
  }
   k=Search();
   Disppath(k);
   printf("%d\n",ans);
   return 0;
}

算法学习->求解三角形最小路径及其值的更多相关文章

  1. 算法学习->求解三角形最小路径

    00 问题 00-1 描述 对给定高度为n的一个整数三角形,找出从顶部到底部的最小路径和.每个整数只能向下移动到与之相邻的整数. 找到一个一样的力扣题:120. 三角形最小路径和 - 力扣(LeetC ...

  2. 算法学习记录-图——最小路径之Floyd算法

    floyd算法: 解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. 设为从到的只以集合中的节点为中间节点的最短路径的长度. 若最短路径经过 ...

  3. leetcode 120. 三角形最小路径和 及 53. 最大子序和

    三角形最小路径和 问题描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

  4. [leetcode-120] 三角形最小路径和

    三角形最小路径和 (1过) 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

  5. 领扣-120 三角形最小路径和 Triangle MD

    三角形最小路径和 Triangle 数组 动态规划 问题 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [2], [3,4], [6,5,7], ...

  6. Java实现 LeetCode 120 三角形最小路径和

    120. 三角形最小路径和 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

  7. 1. 线性DP 120. 三角形最小路径和

    经典问题: 120. 三角形最小路径和  https://leetcode-cn.com/problems/triangle/ func minimumTotal(triangle [][]int) ...

  8. [算法]LeetCode 120:三角形最小路径和

    题目描述: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3]]自顶向下的最小路径和 ...

  9. LeetCode(120):三角形最小路径和

    Medium! 题目描述: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...

随机推荐

  1. Python - 生成requirement.text 文件

    前言 该篇操作笔记摘自小菠萝 Python项目中,一般都会有一个 requirements.txt 文件 这个文件主要是用于记录当前项目下的所有依赖包及其精确的版本号,以方便在一个新环境下更快的进行部 ...

  2. Hadoop的高可用搭建

    在已经安装完hadoop单机和zookeeper前提下 1.免密钥 ssh-keygen -t rsa 分发秘钥 ssh-copy-id -i master ssh-copy-id -i node1 ...

  3. JDK1.8源码(四)——java.util.Arrays类

    一.概述 1.介绍 Arrays 类是 JDK1.2 提供的一个工具类,提供处理数组的各种方法,基本上都是静态方法,能直接通过类名Arrays调用. 二.类源码 1.asList()方法 将一个泛型数 ...

  4. Lucene基础入门

    1. 数据的分类 结构化数据: 查询方法     数据库 非结构化数据: 查询方法  : (1)顺序扫描法   : 一行一行的看,从头看到尾 (2)全文检索 : 将一部分信息提取出来,重新组织将其变得 ...

  5. [转载]linux环境变量设置方法总结(PATH/LD_LIBRARY_PATH)

    http://blog.chinaunix.net/uid-354915-id-3568853.html PATH:  可执行程序的查找路径查看当前环境变量:echo $PATH设置: 方法一:exp ...

  6. CF891B-Gluttony【构造】

    正题 题目链接:https://www.luogu.com.cn/problem/CF891B 题目大意 给出\(n\)个数字互不相同的一个序列\(a\),求它的一个排列\(b\),使得选出任意一个\ ...

  7. 51nod1836-战忽局的手段【期望dp,矩阵乘法】

    正题 题目连接:http://www.51nod.com/Challenge/Problem.html#problemId=1836 题目大意 \(n\)个点\(m\)次随机选择一个点标记(可以重复) ...

  8. MyBatis的缓存玩法

    重要概念 SqlSession:代表和数据库的一次会话,提供了操作数据库的方法. MappedStatement:代表要发往数据执行的命令,可以理解为SQL的抽象表示. Executor:和数据库交互 ...

  9. Tomcat 源码环境搭建

    Tomcat 源码搭建 下载源码 下载地址 :https://tomcat.apache.org/download-80.cgi#8.5.35 下载之后解压缩 导入Idea 添加pom.xml文件 & ...

  10. rocketmq高可用集群部署(RocketMQ-on-DLedger Group)

    rocketmq高可用集群部署(RocketMQ-on-DLedger Group) rocketmq部署架构 rocketmq部署架构非常多,都是为了解决一些问题,越来越高可用,越来越复杂. 单ma ...