LOJ 2353 & 洛谷 P4027 [NOI2007]货币兑换(CDQ 分治维护斜率优化)
纪念一下第一道(?)自己 yy 出来的 NOI 题。
考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱。
那么有 \(dp[i]=\max\{\max\limits_{j=1}^{i-1}a[i]*(dp[j]/(a[j]*r[j]+b[j])*r[j])+b[i]*dp[j]/(a[j]*r[j]+b[j]),dp[i-1]\}\)
我们稍微观察一下,里面那个式子似乎能写成斜率优化的样子:
令 \(t[j]=dp[j]/(a[j]*r[j]+b[j])\),假设有 \(j>k\) 并且从 \(j\) 转移比从 \(k\) 转移更优,那么:
\(a[i]*t[j]*r[j]+b[i]*t[j]>a[i]*t[k]*r[k]+b[i]*t[k]\)
将这个式子变个形,可以得到:
\(\frac{t[j]*r[j]-t[k]*r[k]}{-t[j]+t[k]}>\frac{b[i]}{a[i]}\)
但显然 \(-t[j]\)(横坐标) 是不单调的,\(\frac{b[i]}{a[i]}\)(斜率)也是不单调的。
解决斜率不单调的问题,这与任务安排有点类似,把所有点扔进凸包后二分斜率找到最优决策点。
解决横坐标不单调的问题,可以借鉴Cow School的方法,使用CDQ分治将前一半的点按横坐标排序后建立凸包。
具体实现时还有诸多细节需考虑,例如 CDQ 分治中递归的顺序不能搞错,必须按照递归左半边 \(\rightarrow\) 用左半边更新右半边答案 \(\rightarrow\) 递归右半边的顺序进行,否则无法从 \(dp[i]\) 更新到 \(dp[i+1]\)。还有就是特判斜率不存在的情况。
/*
Contest: -
Problem: P4027
Author: tzc_wk
Time: 2020.7.18
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define fillsmall(a) memset(a,0xcf,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
typedef pair<int,int> pii;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const double EPS=1e-10;
int n=read();
struct data{
double a,b,r,dp;
} a[100005],tmp[100005];
inline double _t(int j){
return 1.0*a[j].dp/(a[j].a*a[j].r+a[j].b);
}
inline double sl(int j,int k){
if(abs((-_t(j))-(-_t(k)))<EPS) return 1e9;
return 1.0*(_t(j)*a[j].r-_t(k)*a[k].r)/((-_t(j))-(-_t(k)));
}
inline void merge(int l,int r,int mid){
int p1=l,p2=mid+1;
for(int i=l;i<=r;i++){
if(p1<=mid&&(p2>r||_t(p1)>_t(p2)))
tmp[i]=a[p1++];
else
tmp[i]=a[p2++];
}
for(int i=l;i<=r;i++){
a[i]=tmp[i];
}
}
int q[100005];
inline int bsearch(int l,int r,double slo){
if(l==r) return q[l];
int mid=(l+r)>>1;
if(sl(q[mid+1],q[mid])-slo>EPS) return bsearch(mid+1,r,slo);
else return bsearch(l,mid,slo);
}
inline void CDQ(int l,int r){
if(l==r){
a[l+1].dp=max(a[l+1].dp,a[l].dp);
return;
}
int mid=(l+r)>>1;
CDQ(l,mid);
int hd=1,tl=0;
fz(i,l,mid){
while(hd<tl&&sl(i,q[tl])-sl(q[tl],q[tl-1])>EPS) tl--;
q[++tl]=i;
}
fz(i,mid+1,r){
int j=bsearch(hd,tl,1.0*a[i].b/a[i].a);
a[i].dp=max(a[i].dp,a[i].a*(a[j].dp/(a[j].a*a[j].r+a[j].b)*a[j].r)+a[i].b*a[j].dp/(a[j].a*a[j].r+a[j].b));
a[i+1].dp=max(a[i+1].dp,a[i].dp);
}
CDQ(mid+1,r);
merge(l,r,mid);
}
signed main(){
cin>>a[1].dp;
fz(i,1,n) scanf("%lf %lf %lf",&a[i].a,&a[i].b,&a[i].r);
CDQ(1,n);
printf("%.3lf\n",a[n+1].dp);
return 0;
}
/*
dp[i]=max{a[i]*(dp[j]/(a[j]*r[j]+b[j])*r[j])+b[i]*dp[j]/(a[j]*r[j]+b[j])}
Let t[j] be dp[j]/(a[j]*r[j]+b[j])
a[i]*t[j]*r[j]+b[i]*t[j]
j>k
a[i]*t[j]*r[j]+b[i]*t[j]>a[i]*t[k]*r[k]+b[i]*t[k]
a[i]*(t[j]*r[j]-t[k]*r[k])>b[i]*(t[k]-t[j])
(t[j]*r[j]-t[k]*r[k])
--------------------->b[i]/a[i]
(-t[j]-(-t[k]))
*/
LOJ 2353 & 洛谷 P4027 [NOI2007]货币兑换(CDQ 分治维护斜率优化)的更多相关文章
- [NOI2007]货币兑换 cdq分治,斜率优化
[NOI2007]货币兑换 LG传送门 妥妥的\(n \log n\)cdq做法. 这题用cdq分治也可以\(n \log n\)但是在洛谷上竟然比一些优秀的splay跑得慢真是见了鬼了看来还是人丑常 ...
- 洛谷P4027 [NOI2007]货币兑换
P4027 [NOI2007]货币兑换 算法:dp+斜率优化 题面十分冗长,题意大概是有一种金券每天价值会有变化,你可以在某些时间点买入或卖出所有的金券,问最大收益 根据题意,很容易列出朴素的状态转移 ...
- Codeforces Gym 101175F - Machine Works(CDQ 分治维护斜率优化)
题面传送门 首先很明显我们会按照 \(d_i\) 的顺序从小到大买这些机器,故不管三七二十一先将所有机器按 \(d_i\) 从小到大排序. 考虑 \(dp\),\(dp_i\) 表示在时刻 \(d_i ...
- 洛谷 P4027 [NOI2007]货币兑换 解题报告
P4027 [NOI2007]货币兑换 题目描述 小 \(Y\) 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:\(A\) 纪念券(以下简称 \(A\) 券)和 \(B\) 纪念券(以下简 ...
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- 洛谷P3810 陌上花开(CDQ分治)
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...
- 洛谷P4169 天使玩偶 CDQ分治
还是照着CDQ的思路来. 但是有一些改动: 要求4个方向的,但是可爱的CDQ分治只能求在自己一个角落方向上的.怎么办?旋转!做4次就好了. 统计的不是和,而是——max!理由如下: 设当前点是(x,y ...
- [NOI2007]货币兑换 「CDQ分治实现斜率优化」
首先每次买卖一定是在某天 $k$ 以当时的最大收入买入,再到第 $i$ 天卖出,那么易得方程: $$f_i = \max \{\frac{A_iRate_kf_k}{A_kRate_k + B_k} ...
- [bzoj] 3263 陌上花开 洛谷 P3810 三维偏序|| CDQ分治 && CDQ分治讲解
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种 ...
随机推荐
- 【UE4 C++】 UnrealPak 与 Pak 的制作、挂载、加载
简介 通过 UnrealPak,可以将资源打包成 Pak 文件 Pak文件是UE4游戏生成的数据包文件. Pak 之前一般先有 Cooked 步骤,将资源烘焙为对应平台支持的资源 一般打包后的项目使用 ...
- NOIP模拟84(多校17)
T1 宝藏 解题思路 考场上一眼出 \(nlog^2\) 做法,然后没看见是 1s 3e5 的数据,我竟然以为自己切了?? 考完之后尝试着把二分改为指针的移动,然后就过了??或许是数据水吧,感觉自己的 ...
- CF375D Tree and Queries 题解
感觉CF的题目名都好朴素的样子 你谷链接 首先这题显然是个dsu on tree 但是我不会. 其次这题显然是个莫队.这我会啊! 然后会发现好像不是很对劲.因为每次询问都有一个k,貌似和传统的莫队数颜 ...
- 21.6.23 test
省选 模拟赛 今天考的是一套题目背景和描述会被[数据删除]的模拟赛. 犯了几个傻逼错. \(T1\) 把两种情况的概率看反了,写的暴力.\(35->5\) pts. \(T2\) 以为想到了正解 ...
- 深度解析HashMap集合底层原理
目录 前置知识 ==和equals的区别 为什么要重写equals和HashCode 时间复杂度 (不带符号右移) >>> ^异或运算 &(与运算) 位移操作:1<&l ...
- 表示数值的字符串 牛客网 剑指Offer
表示数值的字符串 牛客网 剑指Offer 题目描述 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2"," ...
- Python NameError: name 'unicode' is not defined
Python2 的unicode 函数在 Python3 中被命名为 str.在 Python3 中使用 ·str 来代替 Python2 中的 unicode.
- P4430 小猴打架
P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...
- 二层组网AP上线
一.实验目的 1)掌握配置WLAN源接口的命令 2)掌握配置DHCP服务器的命令 3)掌握手工确认AP上线的方法a 二.实验仪器设备及软件 仪器设备:一台AC,四台AP 软件:ENSP 三.实验原理 ...
- 【mysql2】下载安装mysql5.7版|不再更新系列
一.下载MySQL 5.7 版 MySQL 5.7 版:官网下载地址 https://dev.mysql.com/downloads/windows/installer/5.7.html 下载的是50 ...