本博客的截图均来自zeya的post:Essential Things You Need to Know About F1-Score | by Zeya | Towards Data Science

F1-score的定义:准确率(precision)和召回率(recall)的调和平均(harmonic mean)

这里主要理解一下为什么使用调和平均,从“调和”这个词出发也可以知道,调和平均可以使得recall和precision之间的差距较小,否则F1会很小,这个很小的幅度比几何平均、算数平均来的还要快,以下是三种平均值的定义:

按照zeya的说法,如果我们谷歌搜为什么F1分数使用调和平均,则会得到类似“调和平均会惩罚不相等的数对惩罚的更厉害”(harmonic mean penalises unequal values more)和“调和平均会惩罚极值”(harmonic mean punishes extreme values),具体理解调和平均相对于另外两种平均的优势可以看下图:

此网址是上图的动态图:Online Graph Maker · Plotly Chart Studio

平面的两个坐标轴是召回率和准确率,紫色的点是调和平均的值,绿色的点是几何平均的值,红色的点是算数平均的值,让我们来看坐下角的值:

从上图我们可以知道,对于相同的(precision=1,recall=0.05)数对,紫色的调和平均给的分数最低,也就是惩罚这种不平均、不平衡或是有极值的(准确率,召回率)数对惩罚的最厉害,从整体上看,紫色的最弯曲,意味着对于相同的(precision,recall)坐标,调和平均的分数不会比其他两种高。

深入理解F1-score的更多相关文章

  1. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

  2. 机器学习中的 precision、recall、accuracy、F1 Score

    1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...

  3. How to compute f1 score for each epoch in Keras

    https://medium.com/@thongonary/how-to-compute-f1-score-for-each-epoch-in-keras-a1acd17715a2 https:// ...

  4. hihocoder 1522 : F1 Score

    题目链接   时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和他的小伙伴们一起写了很多代码.时间一久有些代码究竟是不是自己写的,小Hi也分辨不出来了. 于是他实现 ...

  5. 机器学习:评价分类结果(F1 Score)

    一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. ...

  6. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  7. 【tf.keras】实现 F1 score、precision、recall 等 metric

    tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义, ...

  8. 【笔记】F1 score

    F1 score 关于精准率和召回率 精准率和召回率可以很好的评价对于数据极度偏斜的二分类问题的算法,有个问题,毕竟是两个指标,有的时候这两个指标也会产生差异,对于不同的算法,精准率可能高一些,召回率 ...

  9. 菜鸟之路——机器学习之SVM分类器学习理解以及Python实现

    SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper ...

  10. 机器学习笔记,使用metrics.classification_report显示精确率,召回率,f1指数

    sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要参数: y_true:1维数组,或标签指示器数组 ...

随机推荐

  1. VR AR MR的未来

    VR:VR(Virtual Reality,即虚拟现实,简称VR),是由美国VPL公司创建人拉尼尔(Jaron Lanier)在20世纪80年代初提出的.其具体内涵是:综合利用计算机图形系统和各种现实 ...

  2. 「算法笔记」Splay

    一.简介 Splay(伸展树)是平衡树中的一种.它通过不断将某个节点旋转到根节点的位置,使整棵树仍满足 BST 的性质,并且保持平衡而不至于退化为链. 频繁访问的节点会被移动到离根节点较近的位置,进而 ...

  3. [opencv]建立纯色图

    1.建立纯白图片,指定大小 250*250为图片的宽高,可自己设置. Mat white = cv::Mat(250,250,CV_8UC3,Scalar(255,255,255)); 2.建立纯黑图 ...

  4. C# .net 使用rabbitmq消息队列——EasyNetQ插件介绍

    EasyNetQ 是一个简洁而适用的RabbitMQ .NET类库,本质上是一个在RabbitMQ.Client之上提供服务的组件集合.

  5. svn创建多个版本库

    mkdir /pangbing cd /pangbing/ svnadmin create 1 svnadmin create 2 svnadmin create3 启动时候这样启动 svnserve ...

  6. CSS基础 transform属性的基本使用 移动 旋转 缩放

    1.实现元素位移效果 语法:transform:translate(x轴水平移动距离,Y轴垂直移动距离) 取值:正负都可以 取值方式:数字+px 百分比 :参照自己本的盒子的百分比 比如:本身自己的宽 ...

  7. shell中的2>/dev/null

    1.文件描述符Linux系统预留可三个文件描述符:0.1和2,他们的意义如下所示:0--标准输入(stdin)1--标准输出(stdout)2--标准错误(stderr) 标准输出--stdout假设 ...

  8. Linux上天之路(九)之文件和文件夹的权限

    主要内容 linux 基本权限 linux特殊权限 linux隐藏权限 linux file ACL 权限 1. Linux的基本权限 使用ls -l filename 命令查看文件或文件夹详细权限 ...

  9. jenkins学习9-测试报告发邮件(Email Extension Plugin)

    前言 前面已经实现在jenkins上展示html的测试报告,接下来只差最后一步,把报告发给你的领导,展示你的劳动成果了. 安装 Email Extension Plugin 插件 jenkins首页- ...

  10. SparkSQL学习笔记

    概述 冠状病毒来临,宅在家中给国家做贡献之际,写一篇随笔记录SparkSQL的学习笔记,目的有二,一是记录整理之前的知识作为备忘录,二是分享技术,大家共同进步,有问题也希望大家不吝赐教.总体而言,大数 ...