[bzoj1089]严格n元树
设f[i]表示深度不超过i的方案数,那么有f[0]=1,$f[i]=f[i-1]^{n}+1$,然后用高精度即可(注意深度恰好为d还要用f[d]-f[d-1]才是答案)
1 #include<bits/stdc++.h>
2 using namespace std;
3 struct ji{
4 int a[1005];
5 }a,s,ans;
6 int n,d;
7 void jia(){
8 for(int i=1;i<=ans.a[0]+1;i++)
9 if (ans.a[i]==9)ans.a[i]=0;
10 else{
11 ans.a[i]++;
12 ans.a[0]=max(ans.a[0],i);
13 break;
14 }
15 }
16 void jian(){
17 for(int i=1;i<=ans.a[0];i++){
18 if (s.a[i]>ans.a[i]){
19 ans.a[i+1]--;
20 ans.a[i]+=10;
21 }
22 ans.a[i]-=s.a[i];
23 }
24 while ((ans.a[0]>1)&&(!ans.a[ans.a[0]]))ans.a[0]--;
25 }
26 void cheng(){
27 memset(a.a,0,sizeof(a.a));
28 a.a[0]=ans.a[0]+s.a[0]-1;
29 for(int i=1;i<=s.a[0];i++)
30 for(int j=1;j<=ans.a[0];j++)a.a[i+j-1]+=s.a[i]*ans.a[j];
31 ans=a;
32 for(int i=2;i<=ans.a[0];i++){
33 ans.a[i]+=ans.a[i-1]/10;
34 ans.a[i-1]%=10;
35 }
36 while (ans.a[ans.a[0]]>9){
37 ans.a[ans.a[0]+1]=ans.a[ans.a[0]]/10;
38 ans.a[ans.a[0]++]%=10;
39 }
40 }
41 int main(){
42 scanf("%d%d",&n,&d);
43 ans.a[0]=ans.a[1]=1;
44 for(int i=1;i<=d;i++){
45 s=ans;
46 for(int j=1;j<n;j++)cheng();
47 jia();
48 }
49 jian();
50 for(int i=ans.a[0];i;i--)printf("%d",ans.a[i]);
51 }
[bzoj1089]严格n元树的更多相关文章
- bzoj1089严格n元树——DP+高精度
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 f[d]为深度小于等于d的树的个数: 从根节点出发,有n个子树,乘法原理可以得到 f[ ...
- bzoj1089严格n元树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 这是一种套路:记录“深度为 i ”的话,转移需要讨论许多情况:所以可以记录成“深度&l ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
- BZOJ1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 762 Solved: 387[Submit][Status ...
- 【bzoj1089】严格n元树
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严格 ...
- BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
随机推荐
- 中国唯一入选 Forrester 领导者象限,阿里云 Serverless 全球领先
3 月 26 日消息,权威咨询机构 Forrester 发布 2021 年第一季度 FaaS 平台评估报告,阿里云函数计算凭借在产品能力.安全性.战略愿景和市场规模等方面的优势脱颖而出,产品能力位列全 ...
- harmony OS 开发工具安装
harmony OS 开发工具安装 安装流程 安装完成 初始配置 双击打开 Running DevEco Studio requires the npm configuration informati ...
- FastAPI 学习之路(十一)请求体 - 嵌套模型
系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...
- Golang通脉之方法
方法和接收者 Go语言中的方法(Method)是一种作用于特定类型变量的函数.这种特定类型变量叫做接收者(Receiver).接收者的概念就类似于其他语言中的this或者 self. Go 语言中同时 ...
- Java项目中常用的的五大设计原则
今天我们一起来聊聊关于设计原则相关的知识点. SOLID五大原则是什么 SRP 单一责任原则 单一责任原则,从名字上我们就能比较好的去理解它.这项原则主张一个对象只专注于单个方面的逻辑,强调了职责的专 ...
- 【数据结构与算法Python版学习笔记】图——基本概念及相关术语
概念 图Graph是比树更为一般的结构, 也是由节点和边构成 实际上树是一种具有特殊性质的图 图可以用来表示现实世界中很多有意思的事物,包括道路系统.城市之间的航班.互联网的连接,甚至是计算机专业的一 ...
- 第五课第四周笔记2:Self-Attention 自注意力
Self-Attention 自注意力 让我们跳进去谈谈transformer的self-attention机制.如果您能了解本视频背后的主要思想,您就会了解变压器网络工作背后最重要的核心思想. 让我 ...
- Convolutional Neural Network-week2编程题1(Keras tutorial - 笑脸识别)
本次我们将: 学习到一个高级的神经网络的框架,能够运行在包括TensorFlow和CNTK的几个较低级别的框架之上的框架. 看看如何在几个小时内建立一个深入的学习算法. 为什么我们要使用Keras框架 ...
- 基于jpa的specification实现动态查询
spring data jpa为我们实现简单的crud操作提供了极大的方便.但大部分情况下,系统中都存在大量的动态查询操作,这个时候就可以借助spring data jpa的 Specificatio ...
- 利用Nginx搭建Ambari本地安装源
1.下载本地源包https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/bk_ambari-installation/content/ch_o ...