Channel-wise卷积在channel维度上进行滑动,巧妙地解决卷积操作中输入输出的复杂全连接特性,但又不会像分组卷积那样死板,是个很不错的想法



来源:晓飞的算法工程笔记 公众号

论文: ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions

Introduction


  深度可分离卷积能够减少网络的计算量和参数量,其中point-wise卷积占据了大部分参数量,论文认为网络轻量化的下一个核心在于改变输入到输出的稠密连接方式。为此,论文提出channel-wise卷积的概念,将输入输出的维度连接进行稀疏化而非全连接,区别于分组卷积的严格分组,让卷积在channel维度上进行滑动,能够更好地保留channel间的信息交流。基于channel-wise卷积的思想,论文进一步提出了channel-wise深度可分离卷积,并基于该结构替换网络最后的全连接层+全局池化的操作,搭建了ChannelNets。

Channel-Wise Convolutions and ChannelNets


  图a为深度可分离卷积结构,而图b为加入分组后的深度可分离卷积的结构,其中每个点代表一维特征。

Channel-Wise Convolutions

  Channel-wise卷积的核心在于输入和输出连接的稀疏化,每个输出仅与部分输入相连,概念上区别于分组卷积,没有对输入进行严格的区分,而是以一定的stride去采样多个相关输入进行输出(在channel维度滑动),能够降少参数量以及保证channel间一定程度的信息流。假设卷积核大小为$d_k$,输出大小维度为$n$,输入特征图大小为$d_f\times d_f$,普通卷积的参数量为$m\times d_k\times d_k\times n$,计算量为$m\times d_k\times d_k\times d_f\times d_f\times d_f\times n$,而channel-wise卷积的参数量为$d_c\times d_k\times d_k$,$d_c$一般为远小于$m$的数,代表一次采样的输入维度,计算量为$d_c\times d_k\times d_k\times d_f\times d_f\times n$,参数量和计算量都脱离于输入特征的维度$m$。

Group Channel-Wise Convolutions

  分组卷积的分组思想会导致channel间的信息阻隔,为了增加分组间的channel信息交流,一般需要在后面添加一个融合层,继续保持分组的同时整合所有组的特征。论文使用分组channel-wise卷积层作为融合层,包含$g$个channel-wise卷积。定义输入特征维度$n$,分组数$g$,每个channel-wise卷积的stride为$g$(这里指channel上滑动的步幅),输出$n/g$特征图(滑动$n/g$次)。为了保证每个分组的输出涵盖了所有的输入,需要满足$d_c \ge g$,最后将所有的输出concate起来,结构如图c所示。

Depth-Wise Separable Channel-Wise Convolutions

  深度可分离channel-wise卷积在深度卷积后面接一个channel-wise卷积用以融合特征来降低参数量和计算量,结构如图d所示。图中的channel-wise卷积的stride为1,$d_c$为3,在进行特征融合的同时能够降低参数量。

Convolutional Classification Layer

  一般网络最后都使用全局池化和全连接层进行最后的分类,但是这样的组合的参数量十分巨大。全局池化+全连接层的组合实际可以转换成深度可分离卷积,使用固定权重的深度卷积代替全局池化,pointwise卷积代替全连接层。因此,可以进一步使用上述的深度可分离channel-wise卷积来进行优化,而这里由于池化和全连接之间没有使用激活函数或BN等操作,采用常规的三维卷积进行实现更高效。

  假设输入特征图为$m\times d_f\times d_f$,类别数为$n$,深度卷积或全局池化可以认为是卷积核大小为$d_f\times d_f\times 1$,权重固定为$1/d^2_f$的三维卷积,而channel-wise可认为是卷积核大小为$1\times 1\times d_c$的三维卷积,两者可以合并成一个卷积核大小为$d_f\times d_f\times d_c$的三维卷积。为了符合类别数量,$d_c=m-n+1$,即每个类别的预测仅需要使用$(m-n+1)$个输入特征图。

  论文可视化了全连接分类层的权重,蓝色是代表为0或接近0的权重,可以看到全连接分类层的权重实际非常稀疏,即本身也只使用到部分输入,所以这里使用部分输入特征也是合理的。

ChannelNets

  ChannelNet根据MobileNet的基础结构进行构建,设计了图3的分组模块(GM)和分组channel-wise模块(GCWM)。由于GM模块存在信息阻隔的问题,所以在GM模块前面使用GCWM来生成包含全局信息的分组特征。

  ChannelNet包含3个版本:

  • ChannelNet-v1替换了部分深度可分离卷积为GM和GCWM,分组数为2,共包含约370万参数。
  • ChannelNet-v2替换最后的深度可分离卷积为深度可分离channel-wise卷积,大约节省100万参数,占ChannelNet-v1的25%参数。
  • ChannelNet-v3替换最后的池化层加全连接层为上述的Convolutional Classification Layer,大约节省了100万(1024x1000-7x7x25)参数。

Experimental Studies


  在ILSVRC 2012进行网络性能对比。

  对比更轻量的网络性能,这里采用MobileNet的width multiplier思想缩放每层的维度。

  对比分组channel-wise卷积对ChannelNet的影响,替换GCWM为GM模块,考虑GCWM模块仅增加了32个参数,这样的性能提升是高效的。

Conclustion


  Channel-wise卷积在channel维度上进行滑动,巧妙地解决卷积操作中输入输出的复杂全连接特性,但又不会像分组卷积那样死板,是个很不错的想法。但感觉论文本身的性能还不够最优,论文对比的也只是MobileNetV1,跟MobileNetV2比差了点。





如果本文对你有帮助,麻烦点个赞或在看呗~

更多内容请关注 微信公众号【晓飞的算法工程笔记】

ChannelNets: 省力又讨好的channel-wise卷积,在channel维度进行卷积滑动 | NeurIPS 2018的更多相关文章

  1. GSM Channel Mode Modify和Channel Mode Modify Acknowledge信令

    最近研究了下如何通过GSM Channel Mode Modify和Channel Mode Modify Acknowledge信令,获知GSM终端支持的data Rate   思路与原理: • I ...

  2. 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播

    卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                        ...

  3. Go语言中的有缓冲channel和无缓冲channel区别

    Go语言中的有缓冲channel和无缓冲channel区别 结论 ch1:=make(chan int)// 无缓冲 ch2:=make(chan int,1)// 有缓冲 无缓冲: 当向ch1中存值 ...

  4. RepLKNet:不是大卷积不好,而是卷积不够大,31x31卷积了解一下 | CVPR 2022

    论文提出引入少数超大卷积核层来有效地扩大有效感受域,拉近了CNN网络与ViT网络之间的差距,特别是下游任务中的性能.整篇论文阐述十分详细,而且也优化了实际运行的表现,值得读一读.试一试   来源:晓飞 ...

  5. 关于matlab矩阵卷积conv2和傅里叶变换求卷积ifft2的关系

    先定义两个矩阵 a = [1 2 3 5 ; 4 7 9 5;1 4 6 7;5 4 3 7;8 7 5 1] %a矩阵取5*4 b = [1 5 4; 3 6 8; 1 5 7]   %b矩阵如多数 ...

  6. deeplearning.ai 卷积神经网络 Week 2 深度卷积网络:实例研究 听课笔记

    1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based lea ...

  7. 【转】python中的一维卷积conv1d和二维卷积conv2d

    转自:https://blog.csdn.net/qq_26552071/article/details/81178932 二维卷积conv2d 给定4维的输入张量和滤波器张量来进行2维的卷积计算.即 ...

  8. golang的缓冲channel和无缓冲channel的区别

    话说golang的channel同步的定义真是让人无力吐槽,码农的用户体验就这么难搞么,超耐磨阿,无缓冲和缓冲居然有这么大区别....靠 转载一段网上的资料 --------------------- ...

  9. 卷积神经网络实战-----0001(移植卷积神经网络c++ to python or java)

    1. https://github.com/174high/simple_cnn  自己fork的 2. https://github.com/can1357/simple_cnn   最初始的 3. ...

随机推荐

  1. C# IAsyncEnumerable Linq使用

    NET Core 3.0和C# 8.0最激动人心的特性之一就是IAsyncEnumerable<T>(也就是async流).但它有什么特别之处呢?我们现在可以用它做哪些以前不可能做到的事? ...

  2. JavaScript 正则匹配中文,中文符号,空格,全数字,以https:// 开头的url,用于各种场景的输入校验

    业务场景1: 密码输入框需要验证输入中文,中文符号,空格等情况,以便于给出错误提示 业务场景2: 输入框只允许输入数字的情况 业务场景3: 输入框允许输入均为数字或以https:// 开头的url的情 ...

  3. CentOS 8 安装Nginx

    安装命令: dnf install nginx -y 这就安装完成了 ,对你没看错一个命令就已经把nginx安装好了,不信你通过 nginx -V 命令查看. 常用操作: 1.nginx配置文件目录 ...

  4. ESP8266系列图片外观 Wi-Fi模块一共有01~14十多款模块

  5. hive集群模式安装

    hadoop3.2.0 完全分布式安装 hive-3.1.1 #解压缩tar -zxvf /usr/local/soft/apache-hive-3.1.1-bin.tar.gz -C /usr/lo ...

  6. Java JVM——8.堆

    堆的核心概念 堆针对一个 JVM 进程来说是唯一的,也就是一个进程只有一个JVM,但是进程包含多个线程,他们是共享同一堆空间的. 一个JVM实例只存在一个堆内存,堆也是Java内存管理的核心区域. J ...

  7. File对象目录列表器

    /****File对象即能代表一个文件又能代表一组目录下的特定文件集:如果它代表一组文件那可以用list方法返回一组字符数组,数组内的对象是该目录下的符合条件的每个文件. 为什么说符合条件下这个前提呢 ...

  8. python 虾米停服了...用python爬取虾米最近播放的1000首歌

    1. 虾米关服 在这里插入图片描述 用了5年多的音乐软件就这么说关就关了,确实让人心里不好受 ,虽然再去一个新的app里,让它们的算法熟悉你的喜好也不是很困难,可我还是习惯虾米的界面.虾米现在可以支持 ...

  9. 风炫安全web安全学习第三十节课 命令执行&代码执行基础

    风炫安全web安全学习第三十节课 命令执行&代码执行基础 代码执行&命令执行 RCE漏洞,可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统. 远程系统命令执行 ...

  10. PHP 插件资源

    PHP   jsonRPC  百度云网盘地址  https://pan.baidu.com/s/1itCIhrdd5bPGJMefNUuKvw   提取码 : ax4d PHP Excel 百度云网盘 ...