pandas模块常用函数解析之Series

关注公众号“轻松学编程”了解更多。

以下命令都是在浏览器中输入。

cmd命令窗口输入:jupyter notebook

打开浏览器输入网址http://localhost:8888/

一、导入模块

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

二、Series

Series是一种类似于一维数组的对象,由下面两个部分组成:

  • values:一组数据(ndarray类型)
  • index:相关的数据索引标签

1、Series的创建

两种创建方式

1.1 由列表或numpy数组创建

默认索引为0到N-1的整数型索引

#使用列表创建Series
s1=Series(data=[1,2,3,4,5])
s1

type(s1)
结果为:
pandas.core.series.Series
#使用numpy创建Series
s2=Series(data=np.linspace(0,10,3))
s2

使用Index参数指定索引

s3=Series(data=np.random.randint(60,100,size=(3)),
index=['语文','数学','英语'])
s3


使用name参数

s4=Series(data=np.random.randint(60,100,size=(3)),
index=['语文','数学','英语'],name='分数')
s4

1.2 由字典创建

不能再使用index,但是依然存在默认索引(即0,1,2,3…) 。

dic={
'python':99,
'java':80,
'C++':70
}
s5=Series(data=dic)
s5


注意:数据源(data)要为一维数组。

2、Series的索引和切片

可以使用中括号取单个索引(此时返回的是元素类型),

或者中括号里一个列表取多个索引(此时返回的是一个Series类型)。分为显示索引和隐式索引:

2.1显式索引
  • 使用index中的元素作为索引值
  • 使用s.loc:注意,loc中括号中放置的一定是显示索引
s=Series(data=np.random.randint(60,100,size=(5,)),
index=['python','java','php','c','c#'],name="分数")
s

s['python']
结果为:
92
#取多个索引
s[['php','java']]
结果为:
php 91
java 69
Name: 分数, dtype: int32
#使用.loc[]
s.loc['java']
结果为:
69
s.loc[['php','java']]

2.2 隐式索引
  • 使用整数作为索引值
  • 使用.iloc:iloc中的中括号中必须放置隐式索引
#s[0]对应为s['python]
s[0]
结果为:
92
s[[1,2]]

s.iloc[0]
结果为:
92
s.iloc[[1,2]]

2.3 显式索引切片

使用冒号进行切片:

  • 显示索引切片:index和loc
s.loc['python':'java']

2.4隐式索引切片

使用冒号进行切片:

  • 隐式索引切片:整数索引值和iloc
s.iloc[1:3]

3、Series的基本概念

可以把Series看成一个定长的有序字典。

向Series增加一行:相当于给字典增加一组键值对。

#增加
s['C++']=70
s

可以通过shape,size,index,values等得到series的属性

s.shape
结果为:
(6,)
s.size
结果为:
6
s.index
结果为:
Index(['python', 'java', 'php', 'c', 'c#', 'C++'], dtype='object')
s.values
结果为:
array([92, 69, 91, 63, 84, 70], dtype=int64)

可以使用s.head(),**tail()**分别查看前n个和后n个值 ,默认n=5。

s.head(3)

s.tail(3)

当索引没有对应的值时,可能出现缺失数据显示NaN(not a number)的情况 。

可以使用pd.isnull(),pd.notnull(),或s.isnull(),notnull()函数检测缺失数据

4、 Series的运算

4.1 + - * /

4.2 add() sub() mul() div()
s1.add(s2)  #s1加上s2

4.3 Series之间的运算
  • 在运算中自动对齐不同索引的数据
  • 如果索引不对应,则补NaN

下面是Python 操作符与pandas操作函数的对应表:

Python Operator Pandas Method(s)
+ add()
- sub(), subtract()
* mul(), multiply()
/ truediv(), div(), divide()
// floordiv()
% mod()
** pow()

5、取 Series 的最大\小值的索引值

可以使用:

获取最大值索引:argmax() 、 idxmax ()

获取最小值索引:argmin() 、 idxmin ()

s=Series(data={
"语文":120,
"数学":109,
"英语":130
})
s


6、把索引变成列

使用reset_index()函数

s=Series(data={
"语文":120,
"数学":109,
"英语":130
},name="分数")
s

s.reset_index(name='分数')

7、获取索引位置

s=Series(data=['a','b','c','d'])
np.argwhere(s[['a']])[0][0]
输出:
0

8、数组维数转换

s=Series(data=['a','b','c','d'])
#转换成一列四行的2维数组
#newaxis相当于是None的意思
s[:,np.newaxis]

效果等同:

s.reshape(-1,1)

9、使用np.hstack()合并数组

x=Series(data=[1,2,3,4])
y=Series(data=[1,2,3,4])

#先把x和y转成二维数组,然后再合并
np.hstack((x.reshape(-1,1),y.reshape(-1,1)))


类似与x轴和y轴合并成坐标点。

后记

【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。

也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!

公众号

关注我,我们一起成长~~

pandas模块常用函数解析之Series(详解)的更多相关文章

  1. python重要的第三方库pandas模块常用函数解析之DataFrame

    pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器 ...

  2. numpy.random模块常用函数解析

    numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the ...

  3. Jmeter 常用函数(31)- 详解 __iterationNum

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 获取当前线程的循环次数,跟线程组属性挂 ...

  4. Jmeter 常用函数(20)- 详解 __counter

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.htm 作用 计数器,跟配置元件里面的计数器作用类似哦 ...

  5. Jmeter 常用函数(1)- 详解 __Random

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 产生一个随机数 语法格式 ${__Ra ...

  6. Jmeter 常用函数(2)- 详解 __RandomDate

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 产生一个随机日期 语法格式 ${__R ...

  7. Jmeter 常用函数(3)- 详解 __RandomString

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 根据指定的字符产生一个随机字符串 语法 ...

  8. Jmeter 常用函数(4)- 详解 __setProperty

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 前言 有看我之前写的 Jmeter 文章的童 ...

  9. Jmeter 常用函数(5)- 详解 __property

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.html 作用 读取 Jmeter 属性 语法格式 $ ...

随机推荐

  1. Linux MMC 驱动子系统简述(源码剖析)

    1. Linux MMC 驱动子系统 块设备是Linux系统中的基础外设之一,而 MMC/SD 存储设备是一种典型的块设备.Linux内核设计了 MMC子系统,用于管理 MMC/SD 设备. MMC ...

  2. 【性能监控-Perfmon工具】Perfmon工具使用教程

    一.Perfmon工具简介 Perfmon是一款Windows自带的性能监控工具,提供了图表化的系统性能实时监视器.性能日志和警报管理.通过添加性能计数器可以实现对CPU.内存.网络.磁盘.进程等多类 ...

  3. 手把手教你AspNetCore WebApi:入门

    需求 前几天,马老板给小明和小红一个"待办事项"网站,小明负责后端,小红负责前端,并要求网站可以同时在 Windows.和 Linux 上运行. 小明整理了一下"待办事项 ...

  4. Python3基础——函数

    ython 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可 ...

  5. 【题解】[国家集训队]happiness

    题目戳我 \(\text{Solution:}\) 显然还是一个分组问题.对于理科和文科我们可以看出最小割模型,而处理同时选择某一学科的时候,需要我们根据套路建立虚点处理. 同 小M的作物 一题,这题 ...

  6. 6-kubernetes网络

    1.service存在的意义 防止破的失联(服务发现) 定义一组pod的访问策略(提供负载均衡) 2.pod与service的关系 通过label-selector相关联 通过service实现pod ...

  7. fastjson,对象转json字符串的过程中对value为null的值的一些处理

    前言 fastjson是一个非常好用的java库,用于操作对象json序列化等等. 问题 最近在写代码的时候遇到问题,通过JSON.toJSONString方法将一个实体对象转为json字符串,转出来 ...

  8. 跟随Javac代码来解答字节码的疑惑

    前言 本文是跟随掘金小册张师傅的<JVM字节码从入门到精通>练习而写的. 问题 问题一: 有如下代码: 1 package com.sun.tools.javac; 2 3 /** 4 * ...

  9. 连接mysql客户端报错: java.sql.SQLException: Unable to load authentication plugin 'caching_sha2_password'

    报这个错可能是因为用了低版本的的客户端.驱动连接高版本的mysql服务器. 解决方式有三种:升级客户端版本.修改服务端认证方式和适应服务端认证方式. 我是通过升级客户端版本解决,参考一下链接: Upg ...

  10. 利用babel工具将es6语法转换成es5,Object.assign方法报错

    一.新建工程初始化项目 1.新建工程文件夹这里起名叫做es6,然后在里面创建两个文件夹分别为src .dist如下图:(src为待转换es6 js存放目录,dist为编译完成后的es5 js存放目录) ...