本来以为有多难,结果发现是道树状数组水题...

显然,对于每一个添加的不等式,有3种情况:

  1. \(a<0\) 。此时可转换为 $x < {{a} \over {c-b}} $ 。

    但是,我们发现 \({a} \over {c-b}\) 这货是实数,容易产生误差,不好处理。

    但我们又发现,询问的 \(k\) 一定是整数。于是,我们可以把上面不等式转换为整数。

    怎么转换?显然对于 \(\forall x \in \mathbb{Z} ,x < a \iff x< \lceil a \rceil\) 。

    所以,这不就转化成 \(x < \lceil {{a} \over {c-b}} \rceil\) 了吗。

  2. \(a=0\) 。此时直接判断是否有 \(b>c\) 。若有,则在树状数组中全部 \(+1\) ;反之则不变。

  3. \(a>0\) 。与第一种情况类似,可以转化成 \(x > \lfloor {{a} \over {c-b}} \rfloor\) 。

那么,我们只要把上面提到的 \(\lceil {{a} \over {c-b}} \rceil\) 、 \(\lfloor {{a} \over {c-b}} \rfloor\) 和询问提到的所有数放在一起离散化一下,用树状数组统计即可。

最后注意一个坑人的点:一个不等式可能被多次删除,这时候就不要重复统计了。

Code:(236ms)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=100010;
struct Operation{int typ,a,b,c,val;}p[N];
int n,cnt,id[N<<1],cntd,raw[N<<1],vis[N<<1];
//raw即为离散化数组;id[i]则记第i条添加的不等式序号为多少
struct TA{//树状数组+查分
#define lowbit(x) ((x)&(-(x)))
int c[N<<1];
inline void add(int x,int val){
for(;x<=cnt+1;x+=lowbit(x)) c[x]+=val;
}
inline void modify(int l,int r,int val){ //区间加
add(l,val);add(r+1,-val);
}
int query(int x){//单点查询
int res=0;
for(;x>0;x-=lowbit(x)) res+=c[x];
return res;
}
#undef lowbit
}ta;
int main(){
cin>>n;
for(int i=1;i<=n;i++){ //先把操作存起来
char op[8];int a,b,c;
scanf("%s",op);
if(op[0]=='A'){
scanf("%d%d%d",&a,&b,&c);
p[i]=(Operation){1,a,b,c};
if(a<0) p[i].val=ceil(1.0*(c-b)/a);
else if(a>0) p[i].val=floor(1.0*(c-b)/a);
id[++cntd]=i;
raw[++cnt]=p[i].val;
}
if(op[0]=='Q'){
scanf("%d",&a);
p[i]=Operation{2,a};
raw[++cnt]=a;
}
if(op[0]=='D'){
scanf("%d",&a);
p[i]=Operation{3,a};
}
}
sort(raw+1,raw+cnt+1);cnt=unique(raw+1,raw+cnt+1)-raw-1;
for(int i=1;i<=n;i++){
//把所有的数值改为离散化后的值
if(p[i].typ==1) p[i].val=lower_bound(raw+1,raw+cnt+1,p[i].val)-raw;
if(p[i].typ==2) p[i].a=lower_bound(raw+1,raw+cnt+1,p[i].a)-raw;
}
for(int i=1;i<=n;i++){
if(p[i].typ==1){
//判断+修改
if(p[i].a<0) ta.modify(1,p[i].val-1,1);
else if(p[i].a>0) ta.modify(p[i].val+1,cnt,1);
else ta.modify(1,cnt,p[i].b>p[i].c?1:0);
}
if(p[i].typ==2) printf("%d\n",ta.query(p[i].a));
if(p[i].typ==3){
int x=id[p[i].a];
if(vis[x]) continue;
vis[x]=1;
if(p[x].a<0) ta.modify(1,p[x].val-1,-1);
else if(p[x].a>0) ta.modify(p[x].val+1,cnt,-1);
else ta.modify(1,cnt,p[x].b>p[x].c?-1:0);
}
}
return 0;
}

【Luogu】 P5482 [JLOI2011]不等式组 题解的更多相关文章

  1. 【做题记录】 [JLOI2011]不等式组

    P5482 [JLOI2011]不等式组 超烦人的细节题!(本人调了两天 QAQ ) 这里介绍一种只用到一只树状数组的写法(离线). 树状数组的下标是:所有可能出现的数据进行离散化之后的值. 其含义为 ...

  2. 【BZOJ2762】[JLOI2011]不等式组 树状数组

    [BZOJ2762][JLOI2011]不等式组 Description 旺汪与旺喵最近在做一些不等式的练习.这些不等式都是形如ax+b>c 的一元不等式.当然,解这些不等式对旺汪来说太简单了, ...

  3. BZOJ 2762: [JLOI2011]不等式组( 平衡树 )

    对不等式变形..然后就是维护一些数, 随便找个数据结构都能写吧....用double感觉会有精度误差, 分类讨论把<改成<=了很久后弃疗了, 自己写了个分数体....然后速度就被完爆了.. ...

  4. bzoj 2762: [JLOI2011]不等式组——树状数组

    旺汪与旺喵最近在做一些不等式的练习.这些不等式都是形如ax+b>c 的一元不等式.当然,解这些不等式对旺汪来说太简单了,所以旺喵想挑战旺汪.旺喵给出一组一元不等式,并给出一个数值 .旺汪需要回答 ...

  5. 【luogu P4568 [JLOI2011]飞行路线】 题解

    题目链接:https://www.luogu.org/problemnew/show/P4568 卡了一晚上,算是分层图最短路的模板.注意卡SPFA,所以我写了个SLF优化. 同时 AC400祭!~ ...

  6. 【BZOJ2762】[JLOI2011]不等式组(树状数组)

    题目: BZOJ2762 分析: 加入的不等式分三种情况 当\(a>0\),可以变成\(x>\lfloor \frac{c-b}{a}\rfloor\) 当\(a=0\),若\(b> ...

  7. NOIP 2014 提高组 题解

    NOIP 2014 提高组 题解 No 1. 生活大爆炸版石头剪刀布 http://www.luogu.org/problem/show?pid=1328 这是道大水题,我都在想怎么会有人错了,没算法 ...

  8. NOIP2008普及组题解

    NOIP2008普及组题解 从我在其他站的博客直接搬过来的 posted @ 2016-04-16 01:11 然后我又搬回博客园了233333 posted @ 2016-06-05 19:19 T ...

  9. noip2010提高组题解

    NOIP2010提高组题解 T1:机器翻译 题目大意:顺序输入n个数,有一个队列容量为m,遇到未出现元素入队,求入队次数. AC做法:直接开1000的队列模拟过程. T2:乌龟棋 题目大意:有长度为n ...

随机推荐

  1. 请编写sql多语句表值函数统,计指定年份中每本书的销售总额

    create table 图书表( 书号 varchar(50), 书名 varchar(50), 单价 int ) create table 销售表( 书号 varchar(50), 销售时间 da ...

  2. Python下的图像处理库,你选哪个?

    奥里给~ 转载:https://blog.csdn.net/chen801090/article/details/105795068/ 在进行数字图像处理时,我们经常需要对图像进行读取.保存.缩放.裁 ...

  3. C++读写ini配置文件GetPrivateProfileString()&WritePrivateProfileString()

    转载: 1.https://blog.csdn.net/fengbingchun/article/details/6075716 2. 转自:http://hi.baidu.com/andywangc ...

  4. fopen和fopen_s的区别

    转载:https://blog.csdn.net/keith_bb/article/details/50063075 fopen: 原型:FILE * fopen(const char * path, ...

  5. Python装饰器实现带参数和不带参数

    1 def log(text=None): 2 3 if isinstance(text, str): 4 def decorator(func): 5 @functools.wraps(func) ...

  6. day62 Pyhton 框架Django 05

    内容回顾 1.变量 render(request,'模板文件名',{ k1:v1 }) {{ k1 }} {{ list.0 }} {{ dict.key }} {{ dict.keys }} {{ ...

  7. 【人人都懂密码学】一篇最易懂的Java密码学入门教程

    密码与我们的生活息息相关,远到国家机密,近到个人账户,我们每天都在跟密码打交道: 那么,密码从何而来?生活中常见的加密是怎么实现的?怎么保证个人信息安全?本文将从这几方面进行浅谈,如有纰漏,敬请各位大 ...

  8. 网页添加 Live2D 看板娘

        我是先参考别人的[点击跳转]博客来做的.不过我发现网上很多人都没有把一些细节写出来,用了别人那里下载的文件后里面的一些跳转链接就跳到他们的页面了.所以我这里写一写如何修改这些跳转链接吧. 1. ...

  9. Elasticsearch 基于external的乐观锁的版本控制

    version_type=external,唯一的区别在于,_version,只有当你提供的version与es中的_version一模一样的时候,才可以进行修改,只要不一样,就报错:当version ...

  10. Docker Stack 笔记

    Docker Compose (Docker Stack) image: Specify the image to start the container from. Can either be a ...