Find a multiple POJ - 2356
Input
Output
If there are more than one set of numbers with required properties you should print to the output only one (preferably your favorite) of them.
Sample Input
5
1
2
3
4
1
Sample Output
2
2
3
证明 反证法 n个盒子每个盒子至多一个物品,总数至多为n,与有n+1个物体矛盾。
例 1.1
求证:整数a1,a2,a3,…,am(ai不是m的倍数),至少有两个数ai,aj除以m后余数相同。
证明:显然余数分布在1到m-1之间,共m-1种情况,而整数有m个,所以至少有两个数ai,aj除以m后余数相同。
求证:有理数中的无限位小数在小数点后某一位必开始循环
证明:由有理数定义我们可设该有理数为N/M(N,M∈Z且M!=0),那么根据竖式除法的原则,求值过程中不断更新的是分子N的值,由于不同分子都是由上次的分子对分母取模所得知,取M个不同的分子,那么根据鸽巢原理,他们中至少有两个数关于M同余,那么下一位结果也就循环了。得证。
这道题给你了n个数,让你找这n个数中有没有几个数的和是n的倍数
你循环遍历一遍这n个数,如果某个数是n的倍数,那就输出一个1再输出这个数
如果没有的话,那就对这n个数求一下求前缀和。
1、在循环遍历一遍这个前缀和,如果某个数是n的倍数,那就输出i,再循环打印出1到i的值(这个i是我们假设的一个下标)
2、如果没有n的倍数的话,那就肯定至少有两个数取余于n的结果一样
是不是想问为什么?嘿嘿
你想一共有n个数,而且这里面没有n的倍数,那么都取余于n之后是没有0的
但是1——n这才一共n-1个数不相同,而你有n个数,那么我们上面的话就得以证明了^_^
那么i+1——j这一段所有数的和不久正是n的倍数嘛。
代码:
1 /*
2 这道题用到了鸠巢原理,我的参考链接:https://blog.csdn.net/guoyangfan_/article/details/102559097
3
4 题意:
5 这道题给你了n个数,让你找这n个数中有没有几个数的和是n的倍数
6
7 题解:
8 你循环遍历一遍这n个数,如果某个数是n的倍数,那就输出一个1再输出这个数
9 如果没有的话,那就对这n个数求一下求前缀和。
10 1、在循环遍历一遍这个前缀和,如果某个数是n的倍数,那就输出i,再循环打印出1到i的值(这个i是我们假设的一个下标)
11 2、如果没有n的倍数的话,那就肯定至少有两个数取余于n的结果一样
12 是不是想问为什么?嘿嘿
13 你想一共有n个数,而且这里面没有n的倍数,那么都取余于n之后是没有0的
14 但是1——n这才一共n-1个数不相同,而你有n个数,那么我们上面的话就得以证明了^_^
15
16 我们接着说,有了两个数取余于n结果一样,比如是1——i的前缀和 和 1——j的前缀和 取余于n的结果一样
17 那么i+1——j这一段所有数的和不久正是n的倍数嘛。
18 */
19 #include<stdio.h>
20 #include<string.h>
21 #include<iostream>
22 #include<algorithm>
23 using namespace std;
24 typedef long long ll;
25 const int maxn=10005;
26 int v[maxn],sum[maxn],p[15005];
27 int main()
28 {
29
30 int n,flag=0;
31 scanf("%d",&n);
32 for(int i=1;i<=n;++i)
33 {
34 scanf("%d",&v[i]);
35 if(v[i]%n==0)
36 {
37 flag=i;
38 }
39 sum[i]=(v[i]+sum[i-1])%n;
40 }
41 if(flag)
42 {
43 printf("1\n%d\n",v[flag]);
44 }
45 else
46 {
47 for(int i=1;i<=n;++i)
48 {
49 if(p[sum[i]])
50 {
51 printf("%d\n",i-p[sum[i]]);
52 for(int j=p[sum[i]]+1;j<=i;++j)
53 printf("%d\n",v[j]);
54 flag=0;
55 break;
56 }
57 else p[sum[i]]=i;
58 if(sum[i]==0)
59 {
60 flag=i;
61 break;
62 }
63 }
64 if(flag)
65 {
66 printf("%d\n",flag);
67 for(int i=1;i<=flag;++i)
68 printf("%d\n",v[i]);
69 }
70 }
71 return 0;
72 }
Find a multiple POJ - 2356的更多相关文章
- Find a multiple POJ - 2356 【鸽巢原理应用】
Problem DescriptionThe input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). E ...
- Mathematics:Find a multiple(POJ 2356)
找组合 题目大意:给你N个自然数,请你求出若干个数的组合的和为N的整数倍的数 经典鸽巢原理题目,鸽巢原理的意思是,有N个物品,放在N-1个集合中,则一定存在一个集合有2个元素或以上. 这一题是说有找出 ...
- Find a multiple POJ - 2356 (抽屉原理)
抽屉原理: 形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2. ...
- Find a multiple POJ - 2356 容斥原理(鸠巢原理)
1 /* 2 这道题用到了鸠巢原理又名容斥原理,我的参考链接:https://blog.csdn.net/guoyangfan_/article/details/102559097 3 4 题意: 5 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2356 Find a multiple 抽屉原理
从POJ 2356来体会抽屉原理的妙用= =! 题意: 给你一个n,然后给你n个数,让你输出一个数或者多个数,让这些数的和能够组成n: 先输出一个数,代表有多少个数的和,然后再输出这些数: 题解: 首 ...
- POJ 2356 && POJ 3370 鸽巢原理
POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...
- [POJ 2356] Find a multiple
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6535 Accepted: 2849 ...
- poj 2356 Find a multiple(鸽巢原理)
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...
随机推荐
- 实现strStr
Implement strStr(). Return the index of the first occurrence of needle in haystack, or -1 if needle ...
- Java JDK8下载 (jdk-8u251-windows-x64和jdk-8u271-linux-x64.tar)
jdk-8u251-windows-x64 和 jdk-8u271-linux-x64.tar 链接:https://pan.baidu.com/s/1gci6aSIFhEhjY8F48qH39Q 提 ...
- P1273 有线电视网(树形动规,分组背包)
题目链接: https://www.luogu.org/problemnew/show/P1273 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树 ...
- 浏览器performance工具介绍及内存问题表现与监控内存的几种方式
一.GC的目的 为了实现内存空间的良性循环,performance提供多种监控方式监控内存 分析内存相关信息 当代码出现问题的时候及时定位到出现问题的代码块, 提高执行效率. preforcemanc ...
- 你这样用过DO循环吗?
DATA: BEGIN OF text, word1(4) TYPE c VALUE 'This', word2(4) TYPE c VALUE 'is', ...
- pycharm工具的使用
一.Pycharm常用快捷键 快捷键 作用 备注 ctrl + win + 空格 自动提示并导包 连按两次 ctrl + alt + 空格 自动提示并导包 连按两次 Alt + Ente ...
- 二本学生拿到腾讯大厂offer的成长记录
本人迈莫,是在20年以春招实习生的身份进入鹅厂,经过重重波折,最终成为鹅仔一份子.接下来我会以我亲生经历为例,分享一下普通大学的学生也是可以进去大厂,拭目以待!!! 初入大学 惨遭毒打 时间倒回到17 ...
- mybatis缓存源码分析之浅谈缓存设计
本文是关于mybatis缓存模块设计的读后感,关于缓存的思考,关于mybatis的缓存源码详细分析在另一篇文章:https://www.cnblogs.com/gmt-hao/p/12448896.h ...
- 什么是STP
简介 了解STP 配置STP 相关信息 简介 STP(Spanning Tree Protocol)是运行在交换机上的二层破环协议,环路会导致广播风暴.MAC地址表震荡等后果,STP的主要目的就是确保 ...
- https://www.cnblogs.com/wclwcw/p/7515515.html
https://www.cnblogs.com/wclwcw/p/7515515.html