基于惩罚项的特征选择法


一、直接对特征筛选

Ref: 1.13.4. 使用SelectFromModel选择特征(Feature selection using SelectFromModel)

通过 L1 降维特征

L1惩罚项降维的原理在于保留多个对目标值具有同等相关性的特征中的一个,所以没选到的特征不代表不重要。故,可结合L2惩罚项来优化。

(1) [Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2【as part 1】

(2) [Scikit-learn] 1.1 Generalized Linear Models - Lasso Regression【as part 2,重点解析了Lasso,作为part 1的补充】

示例代码如下,但问题来了,如何图像化参数的重要性。

from sklearn.svm import LinearSVC
  
X.shape
# (150, 4) lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
model = SelectFromModel(lsvc, prefit=True)

# 原数据 --> 转变为 --> 降维后的数据
X_new = model.transform(X)
X_new.shape
# (150, 3)

L1 参数筛选

直接得到理想的模型,查看最后参数的二维分布:Feature selection using SelectFromModel and LassoCV

# Author: Manoj Kumar <mks542@nyu.edu>
# License: BSD 3 clause print(__doc__) import matplotlib.pyplot as plt
import numpy as np from sklearn.datasets import load_boston
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LassoCV # Load the boston dataset.
boston = load_boston()
X, y = boston['data'], boston['target'] # We use the base estimator LassoCV since the L1 norm promotes sparsity of features.
clf = LassoCV() # Set a minimum threshold of 0.25
sfm = SelectFromModel(clf, threshold=0.25)
sfm.fit(X, y)
n_features = sfm.transform(X).shape[1] # Reset the threshold till the number of features equals two.
# Note that the attribute can be set directly instead of repeatedly
# fitting the metatransformer.
while n_features > 2:
sfm.threshold += 0.1
X_transform = sfm.transform(X)
n_features = X_transform.shape[1] # Plot the selected two features from X.
plt.title(
"Features selected from Boston using SelectFromModel with "
"threshold %0.3f." % sfm.threshold)
feature1 = X_transform[:, 0]
feature2 = X_transform[:, 1]
plt.plot(feature1, feature2, 'r.')
plt.xlabel("Feature number 1")
plt.ylabel("Feature number 2")
plt.ylim([np.min(feature2), np.max(feature2)])
plt.show()

二、轨迹图

Sparse recovery: feature selection for sparse linear models

学习可视化 L1 过程,代码分析。

Ref: scikit-learn 线性回归算法库小结

Ref: Lasso权重可视化

注意,该标题的代码过期了:Deprecate randomized_l1 module #8995

轨迹图

Ref: LARS算法的几何意义

Ref: 1.1. Generalized Linear Models【更多轨迹图】

从右往左看,重要的参数在最后趋于0。

print(__doc__)

# Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD 3 clause import numpy as np
import matplotlib.pyplot as plt from sklearn import linear_model
from sklearn import datasets diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target print("Computing regularization path using the LARS ...")
_, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) # 注释一:累加,然后变为“比例”
xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]

plt.plot(xx, coefs.T)
ymin, ymax = plt.ylim()
plt.vlines(xx, ymin, ymax, linestyle='dashed')
plt.xlabel('|coef| / max|coef|')
plt.ylabel('Coefficients')
plt.title('LASSO Path')
plt.axis('tight')
plt.show()

“注释一” 的结果显示:

Computing regularization path using the LARS ...

[   0.           60.11926965  663.66995526  888.91024335 1250.6953637
1440.79804251 1537.06598321 1914.57052862 2115.73774356 2195.55885543
2802.37509283 2863.01080401 3460.00495515] [0. 0.01737549 0.19181185 0.25691011 0.36147213 0.41641502
0.44423809 0.55334329 0.61148402 0.63455367 0.80993384 0.82745858
1. ]

三、L2 协助 L1 优化

L1惩罚项降维的原理在于保留多个对目标值具有同等相关性的特征中的一个,所以没选到的特征不代表不重要。故,可结合L2惩罚项来优化。

具体操作为:若一个特征在L1中的权值为1,选择在L2中权值差别不大且在L1中权值为0的特征构成同类集合,将这一集合中的特征平分L1中的权值,故需要构建一个新的逻辑回归模型:

    • __init__中,默认L1, 但内部又“配置了一个L2"的额外的模型。
    • fit()进行了重写:先用L1训练一次,再用L2训练一次。
from sklearn.linear_model import LogisticRegression

class LR(LogisticRegression):
def __init__(self, threshold=0.01, dual=False, tol=1e-4, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver='liblinear', max_iter=100,
multi_class='ovr', verbose=0, warm_start=False, n_jobs=1): #权值相近的阈值
self.threshold = threshold #初始化模型
LogisticRegression.__init__(self, penalty='l1', dual=dual, tol=tol, C=C,
fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight,
random_state=random_state, solver=solver, max_iter=max_iter,
multi_class=multi_class, verbose=verbose, warm_start=warm_start, n_jobs=n_jobs)
#使用同样的参数创建L2逻辑回归
self.l2 = LogisticRegression(penalty='l2', dual=dual, tol=tol, C=C, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight = class_weight, random_state=random_state, solver=solver, max_iter=max_iter, multi_class=multi_class, verbose=verbose, warm_start=warm_start, n_jobs=n_jobs)

def fit(self, X, y, sample_weight=None):
#训练L1逻辑回归
super(LR, self).fit(X, y, sample_weight=sample_weight)
self.coef_old_ = self.coef_.copy()
#训练L2逻辑回归
self.l2.fit(X, y, sample_weight=sample_weight) cntOfRow, cntOfCol = self.coef_.shape
# 权值系数矩阵的行数对应目标值的种类数目
for i in range(cntOfRow):
for j in range(cntOfCol):
coef = self.coef_[i][j]
#L1逻辑回归的权值系数不为0
if coef != 0:
idx = [j]
#对应在L2逻辑回归中的权值系数
coef1 = self.l2.coef_[i][j]
for k in range(cntOfCol):
coef2 = self.l2.coef_[i][k]
#在L2逻辑回归中,权值系数之差小于设定的阈值,且在L1中对应的权值为0
if abs(coef1-coef2) < self.threshold and j != k and self.coef_[i][k] == 0:
idx.append(k)
#计算这一类特征的权值系数均值
mean = coef / len(idx)
self.coef_[i][idx] = mean
return self from sklearn.feature_selection import SelectFromModel #带L1和L2惩罚项的逻辑回归作为基模型的特征选择
#参数threshold为权值系数之差的阈值
SelectFromModel(LR(threshold=0.5, C=0.1)).fit_transform(iris.data, iris.target)

基于树模型的特征选择法


一、Feature importances with forests of trees

基于树的预测模型(见 sklearn.tree 模块,森林见 sklearn.ensemble 模块)能够用来计算特征的重要程度,因此能用来去除不相关的特征(结合 sklearn.feature_selection.SelectFromModel ):

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features
# 自定义一个数据集合,这是个好东西
X, y = make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False) # Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250, random_state=0)
forest.fit(X, y)

# 森林中许多树,每棵树对应了一套自己的标准得到的”重要性评估"
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0)
indices = np.argsort(importances)[::-1] # Print the feature ranking
print("Feature ranking:") for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],
color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()

结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAeoAAAJOCAYAAAB4CERfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3TU9Z3/8VcmF25BEskWIQlJXMJuoO4KkrincqtYwuVAdLXbbD0CXRrLaVMW2y2xVI9iT/dI7Z7uHyuenigu9UIqWtawu5TSQ7N6PKBfJMHEEJhJImRMBGKGq7QJ4fP7Q5yfY0ImGOK8gefjnM9JZr7fmXl/8fLMNzPMxElyAgAAJvliPQAAALg4Qg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaogavYU089pYceeijWYwAYgDjx96iBHpqbmzVmzBh1d3eHr5s4caLa2to+933OmjVLzz//vDIzMy/HiFecZ599VsFgUA8//HCsRwGuKJxRAxexaNEijRw5MrwGEunLIT4+PqaPPxA+H/+rAQbCsVisyNXc3OzmzJnT67Zbb73VvfHGGy4UCrmamho3a9as8LZly5a5+vp6d/LkSdfY2Ojuv/9+J8kNHz7cffTRR667u9udOnXKnTp1yo0dO9Y9++yz7qc//Wn49rNmzXItLS0Rc6xevdrt27fP/elPf3Lx8fFu7Nix7uWXX3ZHjx51TU1N7vvf//5Fj+PT9//Jff/oRz9yR44cca2tra6oqMjNnz/fHThwwH344Yfuxz/+cfi2jzzyiNu8ebOrqKhwJ0+edG+//bb7m7/5m/D2v/7rv3Z//OMfXSgUcnV1dW7RokURj7t+/Xr3P//zP+706dOupKTEdXZ2uj//+c/u1KlTrrKy0klyZWVlLhAIuJMnT7p3333X3XnnneH7WLp0qXv99dfdE0884To6OlxTU5ObN29eeHtqaqrbsGGDe//9911HR4fbsmVLeNvChQtddXW1C4VC7o033nA33XRTeNvq1atdMBh0J0+edA0NDe7222+P+b9vLFaUFfMBWCxz62KhHjdunGtvb3fz5893cXFx7o477nDt7e0uLS3NSXILFixwN954o5PkZs6c6c6cOeOmTJnipJ4RltSvUFdXV7uMjAw3dOhQFxcX5/bs2eMefvhhl5iY6HJyclxjY6ObO3dur8fx2VB3dXW5hx9+2CUkJLhvf/vb7ujRo+6FF15wycnJbtKkSe7s2bMuJyfHSR+HurOz0919990uISHB/fCHP3RNTU0uISHBJSQkOL/f73784x+7xMRE99WvftWdPHnSTZw4Mfy4x48fd1/5yldcXFycGzJkSI9jleTuueceN3bsWBcXF+f+4R/+wZ0+fdrdcMMNTvo41J2dne7b3/628/l8bsWKFe79998P3/a///u/XUVFhUtJSXEJCQlu5syZTpKbMmWKO3LkiCsoKHA+n88tWbLENTc3u6SkJDdx4kR3+PBhN3bsWCfJZWVlhf95sViGV8wHYLHMrebmZnfq1CkXCoVcKBQKn62tXr3a/frXv47Y93e/+51bsmRJr/ezZcsWt3LlSid9/lB/61vfCl8uKChwhw4diriPBx980G3YsKHXx/9sqD/66CPn8/mcJJecnOycc66goCC8/549e1xRUZGTPg71rl27wtvi4uJca2urmz59ups+fbpra2tzcXFx4e0vvviie+SRR8KPu3Hjxj6PtbdVXV3tFi9e7KSPQ+33+8Pbhg0b5pxzbsyYMe6GG25w3d3dLiUlpcd9rF+/3j322GMR1zU0NLiZM2e6v/zLv3RHjhxxc+bMcQkJCTH/94zF6s/iiSPgIu68806lpqYqNTVVd911lyQpKytLX//61xUKhcJr+vTpGjt2rCRp3rx52rVrlz788EOFQiEtWLBAaWlpA5qjpaUl/H1WVpbGjRsX8fhr1qzRmDFj+nVfH374oc6fPy9JOnv2rCTpyJEj4e1nz55VcnJyr4/tnFMwGNS4ceM0btw4tbS0yDkX3n7o0CGlp6f3etuLue+++1RdXR0+li9/+csRf14ffPBBxGySlJycrMzMTHV0dOj48eM97jMrK0s//OEPI/6MMjMzNW7cODU2NmrVqlV69NFHdfToUW3atCn8zw6wilADl6ClpUXPPfdcOOCpqalKTk7WunXrlJSUpFdeeUW/+MUvNGbMGKWmpup///d/FRcXJ0kRUfvEmTNnNHz48PDlG264occ+n75dS0uLmpubIx7/uuuu08KFCwfhaBXxCvW4uDhlZGSotbVVra2tyszMDB+bJI0fP17vv/9+r3P3dnn8+PEqLy9XaWmpRo8erdTUVNXV1UXc58W0tLTo+uuv16hRo3rd9rOf/Sziz2jEiBGqqKiQJG3atEkzZsxQVlaWnHNat25d//4wgBgh1MAleP7557Vo0SLNnTtXPp9PQ4YM0axZs5Senq6kpCQNGTJEx44d07lz5zRv3jzNnTs3fNsjR45o9OjRuu6668LX1dTUaMGCBUpNTdWYMWO0atWqPh//rbfe0smTJ7V69WoNHTpUPp9PkydP1rRp0wbleG+55Rbdddddio+P16pVq/TnP/9Zu3fv1ptvvqkzZ85o9erVSkhI0KxZs7Ro0aJwDHtz5MgR3XjjjeHLI0aMkHNOx44dkyQtW7ZMX/7yl/s11wcffKBt27Zp/fr1SklJUUJCgmbMmCFJKi8v14oVK1RQUCBJGj58uBYsWKDk5GRNnDhRX/3qV5WUlKQ//elPOnv2bMRfwQMsItTAJQgGgyoqKtKaNWt07NgxtbS06Ec/+pF8Pp9Onz6tlStX6qWXXlIoFNI3v/lNVVZWhm974MABbdq0SU1NTQqFQho7dqyee+457du3T++9955+//vf6ze/+U2fj3/+/HktWrRIN998s5qbm9Xe3q6nn3661zPLy+HVV1/VN77xDYVCId133336+7//e507d05dXV1avHix5s+fr/b2dq1fv15LlizRgQMHLnpfzzzzjCZNmqRQKKQtW7Zo//79+rd/+zft2rVLR44c0U033aQ33nij37Pdd9996urqUkNDg44ePRr+Ieftt99WSUmJ/uM//kOhUEiBQEDLli2TJA0ZMkSPP/642tvb9cEHH+hLX/qS1qxZM6A/I2Cw8YYnAHr1yCOPaMKECbrvvvtiPQpwTeOMGgAAwwg1AACG8atvAAAM44waAADDEmI9wGcdPXpUhw4divUYAAB8YbKysvSlL32p123mQn3o0CHl5+fHegwAAL4wnudddBu/+gYAwDBCDQCAYYQaAADD+hXqwsJCNTQ0yO/3q6ysrMf273znO3rnnXdUXV2t119/XXl5eZI+fnL8o48+UnV1taqrq/XUU09d3ukBALgG9P05mD6fCwQCLicnxyUmJrqamhqXl5cXsc/IkSPD3y9atMht27bNSR9/KHttbe0lfe6m53kx/+xPFovFYrG+yNVX+6KeURcUFCgQCKi5uVldXV2qqKhQUVFRxD6nTp0Kf//JJ+IAAICBixrq9PT0iA+ADwaDER8O/4nvfve7CgQC+vnPf66VK1eGr8/JydHevXtVVVWl6dOn9/oYJSUl8jxPnudFfGg8AADXuqih7u1D3Hs7Y16/fr0mTJigsrIyPfTQQ5KktrY2jR8/XlOnTtUPfvADvfjiixo5cmSP25aXlys/P1/5+flqb2//PMcBAMBVKWqog8GgMjMzw5czMjLU2tp60f0rKip05513SpI6OzvV0dEhSdq7d68aGxs1ceLEgc4MAMA1I2qoPc9Tbm6usrOzlZiYqOLiYlVWVkbsM2HChPD3CxculN/vlySlpaXJ5/v4IXJycpSbm6umpqbLOT8AAFe1qG8h2t3drdLSUm3fvl3x8fHasGGD6uvrtXbtWu3Zs0dbt25VaWmp7rjjDnV1dSkUCmnp0qWSpJkzZ+qxxx7TuXPn1N3drRUrVigUCg36QQEAcLUw9zGXnufxXt8AgGtKX+3jnckAADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYf0KdWFhoRoaGuT3+1VWVtZj+3e+8x298847qq6u1uuvv668vLzwtgcffFB+v18NDQ2aO3fu5ZscAIBrhOtr+Xw+FwgEXE5OjktMTHQ1NTUuLy8vYp+RI0eGv1+0aJHbtm2bk+Ty8vJcTU2NS0pKctnZ2S4QCDifz9fn43me1+d2FovFYrGuttVX+6KeURcUFCgQCKi5uVldXV2qqKhQUVFRxD6nTp0Kfz9ixAg55yRJRUVFqqioUGdnp9577z0FAgEVFBREe0gAAHBBQrQd0tPT1dLSEr4cDAZ166239tjvu9/9rn7wgx8oKSlJt99+e/i2u3fvjrhtenp6j9uWlJTo/vvvlySlpaVd+lEAAHCVinpGHRcX1+O6T86YP239+vWaMGGCysrK9NBDD13SbcvLy5Wfn6/8/Hy1t7f3a3AAAK4FUUMdDAaVmZkZvpyRkaHW1taL7l9RUaE777zzc90WAABEihpqz/OUm5ur7OxsJSYmqri4WJWVlRH7TJgwIfz9woUL5ff7JUmVlZUqLi5WUlKSsrOzlZubq7feeusyHwIAAFevqM9Rd3d3q7S0VNu3b1d8fLw2bNig+vp6rV27Vnv27NHWrVtVWlqqO+64Q11dXQqFQlq6dKkkqb6+Xi+99JLq6+t17tw5fe9739P58+cH/aAAALhaxOnjl3+b4Xme8vPzYz0GAABfmL7aF/WM+mo0kJ9MZl/4WjWA++j5EjsAAHrHW4gCAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMCwh1gNcaapiPQAA4JrCGTUAAIb1K9SFhYVqaGiQ3+9XWVlZj+0PPPCA3n33Xe3bt09/+MMfNH78+PC2c+fOqbq6WtXV1Xr11Vcv3+QAAFwjXF/L5/O5QCDgcnJyXGJioqupqXF5eXkR+8yePdsNGzbMSXIrVqxwFRUV4W2nTp3q8/4/uzzPu6T9P89yMV6DfXwsFovFurJWX+2LekZdUFCgQCCg5uZmdXV1qaKiQkVFRRH7VFVV6ezZs5Kk3bt3KyMjI9rdAgCAfoga6vT0dLW0tIQvB4NBpaenX3T/5cuXa9u2beHLQ4cOled52rVrV4/Af6KkpESe58nzPKWlpV3K/AAAXNWivuo7Li6ux3XOuV73vffeezVt2jTNmjUrfN348ePV1tamnJwc7dy5U7W1tWpqaoq4XXl5ucrLyyVJnudd0gEAAHA1i3pGHQwGlZmZGb6ckZGh1tbWHvvNmTNHP/nJT7R48WJ1dnaGr29ra5MkNTc3q6qqSlOmTLkccwMAcM3o8wnu+Ph419jY6LKzs8MvJps0aVLEPjfffLMLBAJuwoQJEdenpKS4pKQkJ8mNHj3aHTx4sMcL0T67eDEZi8Visa611Vf7ov7qu7u7W6Wlpdq+fbvi4+O1YcMG1dfXa+3atdqzZ4+2bt2qJ554QsnJydq8ebMk6fDhwyoqKlJeXp5+9atf6fz58/L5fHr88ce1f//+aA8JAAAuiNPHxTbD8zzl5+cP6mPE+oB7PusPALiW9dU+3pkMAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhiXEegD05AZ4+9kXvlYN4D7iBjgDAODy4IwaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMP6FerCwkI1NDTI7/errKysx/YHHnhA7777rvbt26c//OEPGj9+fHjbkiVLdPDgQR08eFBLliy5fJMDAHCNcH0tn8/nAoGAy8nJcYmJia6mpsbl5eVF7DN79mw3bNgwJ8mtWLHCVVRUOEkuNTXVNTY2utTUVJeSkuIaGxtdSkpKn4/neV6f2y/HcjFegz3frAtrMGdksVgs1uVbfbUv6hl1QUGBAoGAmpub1dXVpYqKChUVFUXsU1VVpbNnz0qSdu/erYyMDEkfn4nv2LFDoVBIx48f144dOzRv3rxoDwkAAC6IGur09HS1tLSELweDQaWnp190/+XLl2vbtm2XdNuSkhJ5nifP85SWlnZJBwAAwNUs6qdnxcX1/Bwl51yv+957772aNm2aZs2adUm3LS8vV3l5uSTJ87xoIwEAcM2IekYdDAaVmZkZvpyRkaHW1tYe+82ZM0c/+clPtHjxYnV2dl7SbQEAwMX1+QR3fHy8a2xsdNnZ2eEXk02aNClin5tvvtkFAgE3YcKEiOtTU1NdU1OTS0lJcSkpKa6pqcmlpqZ+7ifUL9dyMV6DPd8s8WIyFovFupJWX+2L+qvv7u5ulZaWavv27YqPj9eGDRtUX1+vtWvXas+ePdq6daueeOIJJScna/PmzZKkw4cPq6ioSKFQSD/96U/Dv85+7LHHFAqFoj0kAAC4IE4fF9sMz/OUn58/qI8R6wPu+cx9pIHON/vC16oB3Ee0GQEAl09f7eOdyQAAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGEJsR4AVyY3gNvOvvC1agD3ETeA2wLAlYQzagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGH9CnVhYaEaGhrk9/tVVlbWY/uMGTP09ttvq6urS3fffXfEtnPnzqm6ulrV1dV69dVXL8/UAABcIxKi7eDz+fTkk0/qa1/7moLBoDzPU2Vlpfbv3x/e5/Dhw1q2bJn+5V/+pcftz549qylTplzeqQEAuEZEDXVBQYECgYCam5slSRUVFSoqKooI9aFDhyRJ58+fH6QxAQC4NkX91Xd6erpaWlrCl4PBoNLT0/v9AEOHDpXnedq1a5eKiop63aekpESe58nzPKWlpfX7vgEAuNpFPaOOi4vrcZ1zrt8PMH78eLW1tSknJ0c7d+5UbW2tmpqaIvYpLy9XeXm5JMnzvH7fNwAAV7uoZ9TBYFCZmZnhyxkZGWptbe33A7S1tUmSmpubVVVVxfPVAABcgqih9jxPubm5ys7OVmJiooqLi1VZWdmvO09JSVFSUpIkafTo0brttttUX18/sIkBALiGRA11d3e3SktLtX37du3fv18vvfSS6uvrtXbtWi1atEiSNG3aNLW0tOjrX/+6fvWrX6murk6SlJeXpz179qimpkZ//OMf9fjjj0e8CA0AAPQtTlL/n3D+Aniep/z8/EF9jFgfcM9n/SMNdL7ZF75WDeA+BnPG2Re+Vg3gPqLNBwBXkr7axzuTAQBgGKEGAMAwQg0AgGFR/x41rjxVsR4AAHDZcEYNAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYQmxHgDXnqpYDwAAVxDOqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhvUr1IWFhWpoaJDf71dZWVmP7TNmzNDbb7+trq4u3X333RHblixZooMHD+rgwYNasmTJ5ZkaAIBriOtr+Xw+FwgEXE5OjktMTHQ1NTUuLy8vYp+srCx30003uY0bN7q77747fH1qaqprbGx0qampLiUlxTU2NrqUlJQ+H8/zvD63X47lYrysz3clzDjY/46wWCzWF7n6al/UM+qCggIFAgE1Nzerq6tLFRUVKioqitjn0KFDqq2t1fnz5yOuLyws1I4dOxQKhXT8+HHt2LFD8+bNi/aQAADggqihTk9PV0tLS/hyMBhUenp6v+68v7ctKSmR53nyPE9paWn9um8AAK4FUUMdFxfX4zrnXL/uvL+3LS8vV35+vvLz89Xe3t6v+wYA4FoQNdTBYFCZmZnhyxkZGWptbe3XnQ/ktgAAoB+h9jxPubm5ys7OVmJiooqLi1VZWdmvO9++fbvmzp2rlJQUpaSkaO7cudq+ffuAhwYA4FoS9dVo8+fPdwcOHHCBQMCtWbPGSXJr1651ixYtcpLctGnTXEtLizt9+rRrb293dXV14dt+61vfcn6/3/n9frds2bIBvfLtci0X42V9vithxsH+d4TFYrG+yNVX++IufGOG53nKz88f1MeI9QH3fOY+Uqznk+zPGG0+ALiS9NU+3pkMAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAzrV6gLCwvV0NAgv9+vsrKyHtuTkpJUUVEhv9+v3bt3KysrS5KUlZWljz76SNXV1aqurtZTTz11eacHAOAqlxBtB5/PpyeffFJf+9rXFAwG5XmeKisrtX///vA+y5cvVygUUm5urr7xjW9o3bp1Ki4uliQ1NjZqypQpg3cEAABcxaKeURcUFCgQCKi5uVldXV2qqKhQUVFRxD5FRUXauHGjJOnll1/WnDlzBmdaAACuMVFDnZ6erpaWlvDlYDCo9PT0i+7T3d2tEydOaPTo0ZKknJwc7d27V1VVVZo+fXqvj1FSUiLP8+R5ntLS0j73wQAAcLWJ+qvvuLi4Htc55/q1T1tbm8aPH6+Ojg5NnTpV//Vf/6XJkyfr1KlTEfuWl5ervLxckuR53iUdAAAAV7OoZ9TBYFCZmZnhyxkZGWptbb3oPvHx8Ro1apQ6OjrU2dmpjo4OSdLevXvV2NioiRMnXs75AQC4qkUNted5ys3NVXZ2thITE1VcXKzKysqIfSorK7V06VJJ0j333KOdO3dKktLS0uTzffwQOTk5ys3NVVNT0+U+BgAArlpRf/Xd3d2t0tJSbd++XfHx8dqwYYPq6+u1du1a7dmzR1u3btUzzzyj5557Tn6/Xx0dHeFXfM+cOVOPPfaYzp07p+7ubq1YsUKhUGjQDwoAgKtFnCQXda8vkOd5ys/PH9THiPUB93xGP1Ks55PszxhtPmlgM1clyy8AAAn1SURBVM6+8LVqAPfRnxkBQOq7fVHPqAEMjlj/ICEN7g9ksy98rRrAffDDDkCoAVzBBvqbndkXvlYN4D74YQKDjff6BgDAMM6oAWAQWX/6gN9K2EeoAQCmxfqHHSm2P0zwq28AAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMP4PGqgF1WxHiCKqlgP0A9VsR4AuEpwRg0AgGGcUQO4ZlXFegCgHzijBgDAMM6oAcCoqlgPABMINQDgc6uK9QBRVMV6gMuAX30DAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACGEWoAAAwj1AAAGEaoAQAwjFADAGAYoQYAwDBCDQCAYYQaAADDCDUAAIYRagAADCPUAAAYRqgBADCMUAMAYBihBgDAMEINAIBhhBoAAMMINQAAhhFqAAAMI9QAABhGqAEAMIxQAwBgGKEGAMCwfoW6sLBQDQ0N8vv9Kisr67E9KSlJFRUV8vv92r17t7KyssLbHnzwQfn9fjU0NGju3LmXb3IAAK4BUUPt8/n05JNPav78+Zo0aZL+8R//UXl5eRH7LF++XKFQSLm5ufrlL3+pdevWSZLy8vJUXFysyZMna968eVq/fr18Pk7iAQDor6jVLCgoUCAQUHNzs7q6ulRRUaGioqKIfYqKirRx40ZJ0ssvv6w5c+aEr6+oqFBnZ6fee+89BQIBFRQUDMJhAABwdUqItkN6erpaWlrCl4PBoG699daL7tPd3a0TJ05o9OjRSk9P1+7duyNum56e3uMxSkpKdP/990uS/uqv/kqe532+o+mnPQO8fVpamtrb2z/37aMd3UDnk+zPONjzSfZnjPV8kv0Z+W/F/nyS/Rm/iP9WBurTTxl/VtRQx8XF9bjOOdevffpzW0kqLy9XeXl5tFHM8DxP+fn5sR6jT9ZntD6fZH9G6/NJzHg5WJ9Psj+j9fmiifqr72AwqMzMzPDljIwMtba2XnSf+Ph4jRo1Sh0dHf26LQAAuLioofY8T7m5ucrOzlZiYqKKi4tVWVkZsU9lZaWWLl0qSbrnnnu0c+fO8PXFxcVKSkpSdna2cnNz9dZbbw3CYQAAcHWKl/RoXzs45+T3+/XCCy/o+9//vp5//nn99re/1dq1azVy5EgdPHhQ77zzju69917967/+q26++WatWLFCx48f17Fjx3T99dfr6aef1je/+U2tXLlSfr//izmyQbZ3795YjxCV9RmtzyfZn9H6fBIzXg7W55Psz2h9vr7ESer5pDEAADCBv9QMAIBhhBoAAMMI9SV45plndOTIEdXW1sZ6lF5lZGRo586dqq+vV11dnVauXBnrkXoV7S1pY2nIkCF68803VVNTo7q6Oj366KOxHqlXo0aN0ubNm7V//37V19fr7/7u72I9UoRVq1aprq5OtbW1evHFFzVkyJBYjxRh4sSJqq6uDq8TJ07on//5n2M9Vg8+n0979+7V1q1bYz1Kr1auXKna2lrV1dWZ/POTpObmZr3zzjuqrq4e9PfoGEyO1b81Y8YMN2XKFFdbWxvzWXpbN9xwg5syZYqT5JKTk92BAwdcXl5ezOf69PL5fC4QCLicnByXmJjoampqzM04YsQIJ8klJCS43bt3u1tvvTXmM312/ed//qdbvny5k+QSExPdqFGjYj7TJ2vcuHGuqanJDR061Elyv/nNb9zSpUtjPtfFls/nc21tbW78+PExn+Wz64EHHnAvvPCC27p1a8xn+eyaPHmyq62tdcOGDXPx8fFux44dbsKECTGf67OrubnZjR49OuZzDGRxRn0JXn/9dXV0dMR6jIv64IMPVF1dLUk6ffq09u/f3+s7wcVSf96SNtbOnDkjSUpMTFRiYmKvb9ITSyNHjtTMmTP1zDPPSJK6urp04sSJGE8VKSEhQcOGDVN8fLyGDx9u+v0T5syZo8bGRh0+fDjWo0RIT0/XwoUL9fTTT8d6lF7l5eVp9+7dOnv2rLq7u/V///d/uuuuu2I91lWJUF+lsrKyNGXKFL355puxHiVCb29Ja+2HCZ/Pp+rqah09elQ7duww93f/b7zxRh07dkzPPvus9u7dq/Lycg0fPjzWY4W1trbqF7/4hQ4fPqy2tjadOHFCO3bsiPVYF1VcXKxNmzbFeowe/v3f/12rV6/W+fPnYz1Kr+rq6jRz5kxdf/31GjZsmBYsWBDxBldWOOf0+9//Xnv27FFJSUmsx/lcCPVVaMSIEXrllVe0atUqnTp1KtbjROjv28rG0vnz5zVlyhRlZGSooKBAkydPjvVIERISEjR16lQ99dRTmjp1qs6cOaMHH3ww1mOFpaSkqKioSDk5ORo3bpxGjBihe++9N9Zj9SoxMVGLFy/W5s2bYz1KhIULF+ro0aOm/+5vQ0OD1q1bpx07duh3v/ud9u3bp3PnzsV6rB5uu+023XLLLZo/f76+973vacaMGbEe6ZIR6qtMQkKCXnnlFb3wwgvasmVLrMfp4Up6W9kTJ06oqqpK8+bNi/UoEYLBoILBYPhM/+WXX9bUqVNjPNX/d8cdd6i5uVnt7e06d+6cfvvb3+orX/lKrMfq1fz587V3714dPXo01qNEuO2227R48WI1NzeroqJCt99+u5577rlYj9XDhg0bdMstt2jWrFnq6Ogw+YZWbW1tkqRjx45py5YtV+wnOMb8ifIraWVlZZl9MZkkt3HjRvfLX/4y5nNcbMXHx7vGxkaXnZ0dfjHZpEmTYj7XJystLS38wqyhQ4e61157zS1cuDDmc312vfbaa27ixIlOknvkkUfcz3/+85jP9MkqKChwdXV1btiwYU76+IVvpaWlMZ+rt7Vp0ya3bNmymM/R15o1a5bJF5NJcn/xF3/hJLnMzEy3f/9+l5KSEvOZPr2GDx/ukpOTw9+/8cYbrrCwMOZzfY4V8wGumPXiiy+61tZW19nZ6VpaWtw//dM/xXymT6/bbrvNOefcvn37XHV1tauurnbz58+P+VyfXfPnz3cHDhxwgUDArVmzJubzfHrddNNNbu/evW7fvn2utrbWPfzwwzGfqbf1t3/7t87zPLdv3z63ZcsWc/+DfPTRR93+/ftdbW2t+/Wvf+2SkpJiPtNn17Bhw1x7e7u77rrrYj5LX8tyqF977TX37rvvupqaGnf77bfHfJ7PrpycHFdTU+NqampcXV2duf/f9HfxFqIAABjGc9QAABhGqAEAMIxQAwBgGKEGAMAwQg0AgGGEGgAAwwg1AACG/T8nmLQD8vUmeQAAAABJRU5ErkJggg==" alt="" />

End.

[Feature] Feature selection - Embedded topic的更多相关文章

  1. [Feature] Feature selection

    Ref: 1.13. Feature selection Ref: 1.13. 特征选择(Feature selection) 大纲列表 3.1 Filter 3.1.1 方差选择法 3.1.2 相关 ...

  2. 论文《Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling》

    Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling 一.主要贡献 1. pro ...

  3. [Feature] Final pipeline: custom transformers

    有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-cust ...

  4. [ML] Feature Selectors

    SparkML中关于特征的算法可分为:Extractors(特征提取).Transformers(特征转换).Selectors(特征选择)三部分. Ref: SparkML中三种特征选择算法(Vec ...

  5. Discover Feature Engineering, How to Engineer Features and How to Get Good at It

    Feature engineering is an informal topic, but one that is absolutely known and agreed to be key to s ...

  6. VINS(二)Feature Detection and Tracking

    系统入口是feature_tracker_node.cpp文件中的main函数 1. 首先创建feature_tracker节点,从配置文件中读取信息(parameters.cpp),包括: ROS中 ...

  7. 如何设置Installshield中 feature的选中状态

    原文:如何设置Installshield中 feature的选中状态 上一篇: 使用strtuts2的iterator标签循环输出二维数组之前一直有筒子问如何设置Installshield中 feat ...

  8. Multipart to single part feature

    Multipart to single part feature Explode Link: http://edndoc.esri.com/arcobjects/8.3/?URL=/arcobject ...

  9. Asp.net core 学习笔记 ( Area and Feature folder structure 文件结构 )

    2017-09-22 refer : https://msdn.microsoft.com/en-us/magazine/mt763233.aspx?f=255&MSPPError=-2147 ...

随机推荐

  1. Jmeter性能测试NoHttpResponseException (the target server failed to respond)

    采用JMeter做Http性能测试时,在高并发请求的情况下,服务器端并无异常,但是Jmeter端报错NoHttpResponseException (the target server failed ...

  2. GIS 基础知识简介

    前言 前一段时间,在公司进行了分析 GIS 基础信息的介绍.之所以会有这个介绍以及为什么是我?这个个中缘由说下. 公司不是一个GIS方面的公司,但是由于业务的需要,经常需要用到地图(要和地图打交道), ...

  3. 《ABCD组》第四次作业:项目需求调研与分析

    <ABCD组>第四次作业:项目需求调研与分析 项目 内容 这个作业属于哪个课程 http://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https:// ...

  4. JS获取当前年份月

    //获取完整的日期 var date=new Date; var year=date.getFullYear();  var month=date.getMonth()+1; month =(mont ...

  5. ajax向服务器发出get和post请求

    假设有个网站A,它有一个简单的输入用户名的页面,界面上有两个输入框,第一个输入框包含在一个form表单里用来实现form提交,第二个输入框是单独的.没有包含在form里,下面就用这两个输入框来学习下j ...

  6. keil mdk 菜单 “project” 崩溃问题解决

    今天发现我的 Keil MDK5.28z win10系统上面,点击 Project 菜单立即崩溃.网上找到了解决方法 简单粗暴的处理方法:重装keil ,但是依然点击 project 崩溃. 通过搜索 ...

  7. pyharm无法安装包的问题

    1.换成下面这个网址 https://github.com/pypa/pip/issues/5236 2.下载最新的pip  3. 然后换回 https://pypi.org/simple/

  8. POJ-2478-Farey Sequence(欧拉函数)

    链接: https://vjudge.net/problem/POJ-2478 题意: The Farey Sequence Fn for any integer n with n >= 2 i ...

  9. Vue动态创建注册component的实例代码

    https://segmentfault.com/a/1190000015698278

  10. Linux 查看实时网卡流量的几种方式

    在工作中,我们经常需要查看服务器的实时网卡流量.通常,我们会通过这几种方式查看Linux服务器的实时网卡流量. 1. sar -n DEV 1 2 sar命令包含在sysstat工具包中,提供系统的众 ...