spark集群安装并集成到hadoop集群
前言
最近在搞hadoop+spark+python,所以就搭建了一个本地的hadoop环境,基础环境搭建地址hadoop2.7.7 分布式集群安装与配置
本篇博客主要说明,如果搭建spark集群并集成到hadoop
安装流程
安装spark需要先安装scala 注意在安装过程中需要对应spark与scala版本, spark 也要跟hadoop对应版本,具体的可以在spark官网下载页面查看
下载sacla并安装
https://www.scala-lang.org/files/archive/scala-2.11.12.tgz
tar zxf scala-2.11.12.tgz
移动并修改权限
chown hduser:hduser -R scala-2.11.11
mv /root/scala-2.11.11 /usr/local/scala
配置环境变量
vim .bashrc
#scala var
export SCALA_HOME=/usr/local/scala
export PATH=$PATH:$SCALA_HOME/bin
安装完成可以通过scala进如交互页面

注意事项
注意:Spark与hadoop版本必须互相匹配,因为Spark会读取Hadoop HDFS 并且必须能在Hadoop YARN执行程序,所以必须要按照我们目前安装的Hadoop版本来选择
笔者这里用的是hadoop2.7.7 所以我选择的是Pre-built for Apache Hadoop 2.7 and later

下载并安装spark
http://mirror.bit.edu.cn/apache/spark/spark-2.3.3/spark-2.3.3-bin-hadoop2.7.tgz
tar zxf spark-2.3.3-bin-hadoop2.7.tgz
移动并修改权限
chown hduser:hduser spark-2.3.3-bin-hadoop2.7
mv spark-2.3.3-bin-hadoop2.7 /usr/local/spark
配置环境变量
vim .bashrc
#spark var
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin
进入spark交互页面
默认是python2.7.x版本,对于当前来说版本比较老,可以修改pyspark来选择其他版本(前提是当前服务器已安装其他版本python)
修改master下的spark-env.sh #没有这个文件可以cp spark-env.sh.template spark-env.sh
在最后一行添加如下
export PYSPARK_PYTHON=/usr/bin/python3
修改master下的spark bin目录下pyspark
将文本中
PYSPARK_PYTHON=python
改为
PYSPARK_PYTHON=python3 #取消INFO信息打印
复制conf目录下的log4j模本文件到log4j.properties
将文本中
log4j.rootCategory=INFO, console
改为
log4j.rootCategory=WARN, console

测试与效果图
本地运行spark
pyspark --master local[4]
spark 读取本地文件,所有节点都必须存在该文件
textFile=sc.textFile("file:/usr/local/spark/README.md")
spark 读取hdfs文件
textFile2=sc.textFile("hdfs://hadoop-master-001:9000/wordcount/input/LICENSE.txt")

Hadoop YARN运行spark
HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop pyspark --master yarn --deploy-mode client
textFile = sc.textFile("hdfs://hadoop-master-001:9000/wordcount/input/LICENSE.txt")
textFile.count()


spark Standalone Cluster运行
编辑spark-env.sh #spark_home/conf
export SPARK_MASTER=hadoop-master-001 //设置master的ip或域名
export SPARK_WORKER_CORES=1 //设置每个worker使用的CPU核心
export SPARK_WORKER_MEMORY=512m //设置每个worker使用的内存
export SPARK_WORKER_INSTANCES=4 //设置实例数
将master环境中的spark目录打包并分别远程传输到所有slave节点中.
设置spark Standalone Cluster 服务器(master环境)
vim /usr/local/spark/conf/slaves 添加ip或域名
hadoop-data-001
hadoop-data-002
hadoop-data-003
启动与关闭
/usr/local/spark/sbin/start-all.sh
/usr/local/spark/sbin/stop-all.sh
pyspark --master spark://hadoop-master-001:7077 --num-executors 1 --total-executor-cores 3 --executor-memory 512m
textFile = sc.textFile("file:/usr/local/spark/README.md")
textFile.count()
注意 当在cluster模式下,如yarn-client或spark standalone 读取本地文件时,因为程序是分不到不同的服务器,所以必须确认所有机器都有该文件,否则会发生错误.
建议 最好在cluster读取hdfs文件,这样不会出现文件
text2=sc.textFile("hdfs://hadoop-master-001:9000/wordcount/input/LICENSE.txt")
text2.count()

spark web ui

异常处理
hadoop yarn运行pyspark时异常信息:
ERROR SparkContext: Error initializing SparkContext. org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master 解决方式
查看http://hadoop-master-001:8088/cluster/app/ 最新任务点击history 查看信息
"Diagnostics: Container [pid=29708,containerID=container_1563435447194_0007_02_000001] is running beyond virtual memory limits. Current usage: 55.6 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container." 修改所有节点的yarn-site.xml,添加如下
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
主节点执行stop-yarn.sh, start-yarn.sh 重启所有节点yarn
spark集群安装并集成到hadoop集群的更多相关文章
- 最近有安装了一次hadoop集群,NameNode启动失败,及原因
最近有安装了一次hadoop集群,NameNode启动失败,查看日志,找到以下原因: 遇到的异常1: org.apache.hadoop.hdfs.server.common.Inconsistent ...
- CDH集群安装配置(三)- 集群时间同步(主节点)和 免密码登录
集群时间同步(主节点) 1. 查看是否安装ntp服务,如果没有安装 rpm -qa |grep ntpd查看命令 yum install ntp安装命令 2. 修改配置 vi /etc/ntp.con ...
- CDH集群安装配置(一)-集群规划和NAT网络配置
三台物理机或者虚拟机. cdh1,cdh2,cdh3. 内存要求大于8GB,cdh1的物理磁盘要求多余50G. 每台虚拟机安装centos 7 系统.
- hadoop2.7.7 分布式集群安装与配置
环境准备 服务器四台: 系统信息 角色 hostname IP地址 Centos7.4 Mster hadoop-master-001 10.0.15.100 Centos7.4 Slave hado ...
- spark集群安装配置
spark集群安装配置 一. Spark简介 Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发.Spark基于map reduce 算法模式实现的分布式计算,拥有Hadoo ...
- 沉淀,再出发——在Hadoop集群的基础上搭建Spark
在Hadoop集群的基础上搭建Spark 一.环境准备 在搭建Spark环境之前必须搭建Hadoop平台,尽管以前的一些博客上说在单机的环境下使用本地FS不用搭建Hadoop集群,可是在新版spark ...
- Spark应用(app jar)发布到Hadoop集群的过程
记录了Spark,Hadoop集群的开启,关闭,以及Spark应用提交到Hadoop集群的过程,通过web端监控运行状态. 1.绝对路径开启集群 (每次集群重启,默认配置的hadoop集群中tmp文件 ...
- hadoop集群环境搭建之zookeeper集群的安装部署
关于hadoop集群搭建有一些准备工作要做,具体请参照hadoop集群环境搭建准备工作 (我成功的按照这个步骤部署成功了,经实际验证,该方法可行) 一.安装zookeeper 1 将zookeeper ...
- hadoop集群环境搭建之安装配置hadoop集群
在安装hadoop集群之前,需要先进行zookeeper的安装,请参照hadoop集群环境搭建之zookeeper集群的安装部署 1 将hadoop安装包解压到 /itcast/ (如果没有这个目录 ...
随机推荐
- docker安装单机hadoop
安装环境 centos7. docker -ce(这个安装参考我的另外一篇博客 首先关闭防火墙 systemctl stop firewalld.service #停止firewall systemc ...
- 使用RESTful风格开发
什么是RESTful风格? REST是REpresentational State Transfer的缩写(一般中文翻译为表述性状态转移),REST 是一种体系结构,而 HTTP 是一种包含了 RES ...
- WebSocketSharp 创建客户端和服务端
这里没有对onOpen.onClose.onError做案例,生产环境需要具备. 1.客户端 只推送不接收数据 创建WebSocketClient类 class WebSocketClient { W ...
- SVN分支创建与合并
SVN分支 一个branch是某个development line(通常是主线也即trunk)的一个拷贝,branch存在的意义在于,在不干扰trunk的情况下,和trunk并行开发,待开发结束后合并 ...
- Linux shell脚本 (十二)case语句
case语句 case ... esac 与其他语言中的 switch ... case 语句类似,是一种多分枝选择结构. case 语句匹配一个值或一个模式,如果匹配成功,执行相匹配的命令.case ...
- “用户名不在 sudoers文件中,此事将被报告” 解决方案
第一次接触Docker是在CentOS上搭建的,没想到第一步就被弄懵了:执行sudo时提示“XXX 不在sudoers文件中,此事将被报告”. 这才刚开始就遇到个未知问题,于是上网找了下解决方法,嗨, ...
- ISO/IEC 9899:2011 条款6.2.6——类型的表示
6.2.6 类型的表示 6.2.6.1 通用类型 1.所有类型的表示都是未指定的,除了在本小节所描述的之外. 2.除了位域(bit-field),对象由连续的一个或多个字节序列构成,这些字节序列的字节 ...
- osg fbx模型中任何一个节点染色(着色)
void setNodeStateset(osg::Node *nodeParam) { osg::ref_ptr<osg::StateSet> stateset1 = nodeParam ...
- tk mybatis动态sql中过滤不使用的字段
实体字段如下 @Data @NoArgsConstructor @AllArgsConstructor @Builder /*** * app图标 */ @JsonFormat public clas ...
- (十七)Centos之安装配置tomcat8
第一步:下载Tomcat8压缩包 进入 http://tomcat.apache.org/download-80.cgi 下载tar.gz压缩包 第二步:用ftp工具把压缩包上传到/home/data ...