luogu P4006 小 Y 和二叉树
可以发现度数\(< 3\)的点可以作为先序遍历的第一个点,那么就把度数\(< 3\)的编号最小的点作为第一个点.然后现在要确定它的左右儿子(或者是右儿子和父亲).我们把第一个点作为根,设\(f_x\)为\(x\)子树内先序遍历第一个点的最小值,一遍树型dp求出来
做的时候要用个变量记录这个点要放左右儿子还是右儿子和父亲,如果当前这个点是上一个点的父亲(或者是第一个点),那么这个点就要放右儿子和父亲,否则放左右儿子
如果只有一个儿子\(y\),就比较两种方式哪一种得到的下一个数最小.如果要放左右儿子,那如果\(f_y<x\)那\(y\)就在左子树,否则在右子树;如果要放右儿子和父亲,然后\(f_y<y\)就放右儿子,否则放父亲
如果有两个儿子,就把\(f\)更小的放在前面,也就是放左右儿子是\(f\)更小的放左儿子,放右儿子和父亲时\(f\)更小的放右儿子
确定好位置后就递归进子树处理子树答案
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e6+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
void add(int x,int y)
{
++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
}
int n,dg[N],f[N];
void dfs(int x,int ffa)
{
f[x]=n+1;
int cn=0;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==ffa) continue;
dfs(y,x),f[x]=min(f[y],f[x]),++cn;
}
if(cn<2) f[x]=min(f[x],x);
}
void dd(int x,int ffa,bool ty)
{
--dg[x];
if(!dg[x])
{printf("%d ",x);return;}
if(ty==1)
{
printf("%d ",x);
if(dg[x]==1)
{
int c1=0;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y!=ffa) c1=y;
}
dd(c1,x,f[c1]==c1);
}
else
{
int c1=0,c2=0;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y!=ffa) c2=c1,c1=y;
}
if(f[c1]<f[c2]) dd(c1,x,0),dd(c2,x,1);
else dd(c2,x,0),dd(c1,x,1);
}
}
else
{
if(dg[x]==1)
{
int c1=0;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y!=ffa) c1=y;
}
if(f[c1]<x)
{
dd(c1,x,0);
printf("%d ",x);
}
else
{
printf("%d ",x);
dd(c1,x,0);
}
}
else
{
int c1=0,c2=0;
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y!=ffa) c2=c1,c1=y;
}
if(f[c1]<f[c2])
{
dd(c1,x,0);
printf("%d ",x);
dd(c2,x,0);
}
else
{
dd(c2,x,0);
printf("%d ",x);
dd(c1,x,0);
}
}
}
}
int main()
{
n=rd();
for(int i=1;i<=n;++i)
{
dg[i]=rd();
for(int j=1;j<=dg[i];++j) add(i,rd());
}
int rt=n+1;
for(int i=1;i<=n;++i)
if(dg[i]<3) {rt=i;break;}
dfs(rt,0);
++dg[rt],dd(rt,0,1);
return 0;
}
luogu P4006 小 Y 和二叉树的更多相关文章
- 【luoguP4006 清华集训2017】小Y和二叉树
题目描述 小 Y 是一个心灵手巧的 OIer,她有许多二叉树模型. 小 Y 的二叉树模型中,每个结点都具有一个编号,小 Y 把她最喜欢的一个二叉树模型挂在了墙上,树根在最上面,左右子树分别在树根的左下 ...
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
- [LOJ#2324]「清华集训 2017」小Y和二叉树
[LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...
- UOJ#339. 【清华集训2017】小 Y 和二叉树 贪心
原文链接 www.cnblogs.com/zhouzhendong/p/UOJ339.html 前言 好久没更博客了,前来更一发. 题解 首先,我们考虑一个子问题:给定根,求出最小中序遍历. 如果根节 ...
- loj2324 「清华集训 2017」小 Y 和二叉树
https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...
- LOJ2324「清华集训 2017」小Y和二叉树
题目链接 瞎jb贪一发就过了.首先度数<=2且编号最小的点一定是中序遍历最靠前的点,我们从这个点开始dfs一遍算出子树中度数<=2且编号最小的点记为\(f(i)\),然后从这个点开始一步一 ...
- LOJ2324. 「清华集训 2017」小 Y 和二叉树【贪心】【DP】【思维】【好】
LINK 思路 首先贪新的思路是处理出以一个节点为根所有儿子的子树中中序遍历起始节点最小是多少 然后这个可以两次dfs来DP处理 然后就试图确定中序遍历的第一个节点 一定是siz<=2的编号最小 ...
- uoj#339. 【清华集训2017】小 Y 和二叉树(构造)
传送门 膜拜大米饼巨巨 构造思路太神仙了-- 先考虑这个序列的开头,肯定是一个度数小于等于\(2\)且标号最小的节点,设为\(u\) 如果一个点度数小于等于\(2\),我们称这个点可以被选择,一个点的 ...
- 【luogu P4007 清华集训2017】小Y和恐怖奴隶主
题目背景 “A fight? Count me in!” 要打架了,算我一个. “Everyone, get in here!” 所有人,都过来! 题目描述 小 Y 是一个喜欢玩游戏的 OIer.一天 ...
随机推荐
- Mathematica——绘制3D图形
Plot3D Plot3D[ + y, {x, -, }, {y, -, }] ListPointPlot3D 绘制点集 ListPointPlot3D[{{, , }, {, , }}, Color ...
- 分享如何在github上为代码创建一个链接
从自学前端到现在差不多一个月了,在此期间,一直有一种困惑,如何将自己电脑中编写的代码生成一个链接,以便可以发布呢?今天有幸被高人指点一二,现将其分享. 第一步,网上注册一个github账号 第二步,新 ...
- DOM解析和SAX解析对比
原理: 一次性加载xml文档,不适合大容量的文件读取 原理: 加载一点,读取一点,处理一点.适合大容量文件的读取 DOM解析可以任意进行增删改成 SAX解析只能读取 DOM解析任意读取任何位置的数据, ...
- NAT(地址转换技术)详解
目录 NAT产生背景ip地址基础知识NAT技术的工作原理和特点静态NAT动态NATNAT重载(经常应用到实际中)NAT技术的优缺点优点缺点NAT穿越技术应用层网关(ALG)ALG的实际应用NAT技术的 ...
- Appium移动自动化测试(二)之appuim + 夜神模拟器
环境搭建起来之后, 就可以开始移动自动化了. 但是使用自带的AVD开启模拟器, 速度实在太慢. 于是用夜神来做替代, 稍微能够有一些提速. 启动appuim 打开Appium,点击右上角Start按钮 ...
- linux性能监控 + Sendmail 发邮件
sendmail安装 #!/bin/bash#控制发邮件的阈值是在rate,rate1和FF值(三个同样的用途,仅仅是名字不同)##注:该博文中的变量不规范,我是随意定义的,请注意##定义时间倒计时函 ...
- c#/netcore/mvc视图中调用控制器方法
1: public class HomeController : Controller { public ActionResult Index() { ...
- jq 实时监听input输入框的变化
项目需求中有时候需要实时监测 input 的值变化,虽然 input 自身有 focus 和 blur 事件,但是有时候跟需求不符合. 所以实时监听 input 值变化的代码为: $("#i ...
- selenium+java:获取列表中的值
selenium+java:获取列表中的值 (2011-08-23 17:14:48) 标签: 杂谈 分类: selenium 初步研究利用java+testNg框架下写selenium测试用例,今天 ...
- 云计算核心组件--keystone身份认证服务(5)
一.Keystone介绍: keystone 是OpenStack的组件之一,用于为OpenStack家族中的其它组件成员提供统一的认证服务,包括身份验证.令牌的发放和校验.服务列表.用户权限的定义等 ...