给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0 且 a​k​​>0。N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k−i​​。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:

输入在一行中给出一个不超过1000位的正整数。

输出格式:

对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C

其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.

输入样例 1:

97152

输出样例 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例 2:

196

输出样例 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
#include <iostream>
#include <algorithm>
using namespace std;
string plus_str(string s1,string s2){
reverse(s1.begin(),s1.end());
reverse(s2.begin(),s2.end());
string res="";int i;bool jinwei=false;
for(i=;i<s2.size();i++){
if(jinwei) {
res+=((s1[i]-''+s2[i]+-'')%+'');
jinwei=false;
if((s1[i]-''+s2[i]-''+)/>) jinwei=true;
}
else {
res+=((s1[i]-''+s2[i]-'')%+'');
if((s1[i]-''+s2[i]-'')/>) jinwei=true;
}
}
if(jinwei) res+='';
reverse(res.begin(),res.end());
return res;
}
int main()
{
string str,rev,add;int n=;
cin>>str;
while(n--){
rev=str;
reverse(rev.begin(),rev.end());
if(str==rev) {
printf("%s is a palindromic number.",str.data());
system("pause");
return ;
}
add=plus_str(str,rev);
printf("%s + %s = %s\n",str.data(),rev.data(),add.data());
str=add;
}
printf("Not found in 10 iterations.");
system("pause");
return ;
}

PAT Baisc 1079 延迟的回文数 (20 分)的更多相关文章

  1. PAT(B) 1079 延迟的回文数(Java)

    题目链接:1079 延迟的回文数 (20 point(s)) 题目描述 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 ...

  2. PAT 乙级 1079 延迟的回文数(20 分)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  3. PAT 1079. 延迟的回文数

    PAT 1079. 延迟的回文数 给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0.N 被称为一个回 ...

  4. PAT 1079 延迟的回文数(代码+思路)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  5. 【PAT】B1079 延迟的回文数(20 分)

    用了柳婼大佬博客的思路,但实现有不同 没有用string所以要考虑字符串末尾的'\0' 用的stl中的reverse逆置字符串 #include<stdio.h> #include< ...

  6. P1079 延迟的回文数

    P1079 延迟的回文数 转跳点:

  7. PAT (Advanced Level) Practice 1019 General Palindromic Number (20 分) (进制转换,回文数)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...

  8. hdu1282回文数猜想

    Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...

  9. C语言 · 特殊回文数

    问题描述 123321是一个非常特殊的数,它从左边读和从右边读是一样的. 输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n . 输入格式 输入一行,包含一个正整数n. 输 ...

随机推荐

  1. PHP爬虫最全总结2-phpQuery,PHPcrawer,snoopy框架中文介绍

    第一篇文章介绍了使用原生的PHP和PHP的扩展库实现了爬虫技术.本文尝试使用PHP爬虫框架来写,首先对三种爬虫技术phpQuery,PHPcrawer, snoopy进行对比,然后分析模拟浏览器行为的 ...

  2. npm镜像指定用淘宝镜像去下载

    使用npm下载,蜗牛,使用cnpm又觉得那啥,所以.把cnpm也就是淘宝镜像绑定成npm下载的代理,这样使用npm的时候其实是用淘宝镜像去下载,这感觉,good! 1. npm config set ...

  3. linux 网络配置及远程连接

    linux 网络配置及远程连接 前言 本文结合自己的经历主要讲述以Centos7为基础网络配置和远程连接的解决步骤 网络配置: 安装好centos7后,是上不了网的,配置步骤如下: (1).输入命令d ...

  4. 2019-10-24 李宗盛 spss作业

    3.1数据排序.  在统计分析时最初的变量.  可能不符合统计分析的要求,需要用户对目标数据进行整理,来符合分析方法个案排序.数据——个案排序.排序依据,排序顺序,变量排序 数据——变量排序 变量视图 ...

  5. csu 1770: 按钮控制彩灯实验

    1770: 按钮控制彩灯实验 Submit Page   Summary   Time Limit: 1 Sec     Memory Limit: 128 Mb     Submitted: 341 ...

  6. 【ZOJ】4012 Your Bridge is under Attack

    [ZOJ]4012 Your Bridge is under Attack 平面上随机n个点,然后给出m条直线,问直线上有几个点 \(n,m \leq 10^{5}\) 由于共线的点不会太多,于是我们 ...

  7. 数据结构 -- 二叉树(Binary Search Tree)

    一.简介 在计算机科学中,二叉树是每个结点最多有两个子树的树结构.通常子树被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用于实现二叉查找树和二叉堆. ...

  8. 1.1Spring Boot 环境配置和常用注解

    Spring Boot常用注解:@Service: 注解在类上,表示这是一个业务层bean@Controller:注解在类上,表示这是一个控制层bean@Repository: 注解在类上,表示这是一 ...

  9. 自定义模块,time,datetime以及random

    自定义模块,time,datetime以及random 1.自定义模块 自定义一个模块 import #导入 (拿工具箱) 模块分类 1.内置模块(标准库) --python解释器自带的.py文件(模 ...

  10. yum报错Loaded plugins: fastestmirror, security

    vim /etc/yum/pluginconf.d/fastestmirror.conf enabled = 0 vim /etc/yum.conf plugins=0 yum clean dbcac ...