(扩展)中国剩余定理

对于一组同余方程

\(x\equiv a_1(mod \quad n_1)\)

\(x\equiv a_2(mod \quad n_2)\)

\(x\equiv a_3(mod \ \ n_3)\)

\(x\equiv a_n(mod\ \ n_m)\)

对于第一个和第二个式子

则有:

\(x = a1 + k1*n1\)

\(x = a2 + k2*n2\)

就有:

\(a1 + k1 * n1 = a2 + k2 * n2\)

\(k1 * n1 - k2 * n2 = a2 - a1\)

故我们设 \(d = a_2 - a_1\) 再变化一下形式就有:

\(k_1 * n_1 + (-k_2) * n_2 = d\)

令 \(g = gcd(n_1,n_2)\)

这样我们就可以通过exgcd来求出一组解 x1,y1

满足 \(x_1 * n_1 + y_2 * n_2 = g\)

故: \(x_1∗d/g∗n_1+y_2∗d/g∗n_2=g∗d/g\)

则: \(k1=x1∗d/g,k2=y1∗d/g\)

从而得到一组通解

\(k1=k1+n2/g∗T\)

\(k2=k2−n1/g∗T\)

要使所求得的解最小且为正整数则可以根据 k1 的通解形式求得

\(k_1 = ( k_1 % ( n_2/g ) + n_2/g ) % ( n_2/g )\)

再带入 $x=a_1+k_1∗n_1 $得到 xx

令 A 为合并后的 a , N 为合并后的 n

**所以\(N=lcm(n_1,n_2)=n_1∗n_2/g\)

\(x==k_1*p_1+a_1 (mod \ \ lcm(n_1,n_2));\)

void exgcd(ll a,ll b,ll &g,ll &x,ll &y)
{
if (b == 0)
{
g = a;x = 1; y = 0;
return;
}
exgcd(b,a%b,g,y,x);
y-=(a/b)*x;
}
bool flag = false;
ll a1,a2,n1,n2;
ll abs(ll x) {return x>0?x:-x;}
void china()
{
ll d = a2 - a1;
ll g,x,y;
exgcd(n1,n2,g,x,y);
if (d % g == 0)
{
x = ((x*d/g)%(n2/g)+(n2/g))%(n2/g);
a1 = x*n1 + a1;
n1 = (n1*n2)/g;
}
else flag = true;
}
int n;
long long as[100001];
long long ps[100001];
ll exchina()
{
a1 = as[0];
n1 =ps[0];
for (ll i = 1;i<n;i++)
{
a2 = as[i];
n2 = ps[i];
china();
if (flag)
return -1;
}
return a1;
} int main()
{
cin>>n;
flag = false;
for (ll i = 0;i<n;i++)
cin>>ps[i]>>as[i];
cout<<(long long)realchina()<<endl;
}

【luoguP4777】【模板】扩展中国剩余定理(EXCRT)的更多相关文章

  1. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  2. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  3. 扩展中国剩余定理 (ExCRT)

    扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...

  4. 扩展中国剩余定理(EXCRT)快速入门

    问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...

  5. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  6. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  7. P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT

    EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...

  8. [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)

    题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...

  9. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  10. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

随机推荐

  1. Java 8 新特性--Lambda表达式作为方法参数

    Lambda表达式的使用场景: 当方法的参数是一个函数式接口时,可以使用Lambda表达式进行简化—— 首先,前提是Runnable接口是一个函数式接口,经过查看源码得知,确实如此: 将Runnabl ...

  2. 设计模式--装饰者模式(io流中使用的模式)

    重点: 1.动态扩展对象,替换之前需要继承才能实现的功能. 2.具体工作的,仍然是被包装的对象,(有点锦上添花的意思,顾名思义仅仅起到装饰的作用,主体不变). 对比继承: 1.减少类的数量. 如果使用 ...

  3. Docker学习笔记导航帖

    1. Docker安装 安装docker https://www.cnblogs.com/kreo/p/10813010.html

  4. springboot中将日志信息存放在catalina.base中

    <?xml version="1.0" encoding="UTF-8"?> <configuration debug="true& ...

  5. POJ1475(Pushing Boxes)--bbffss

    题目在这里 题目一看完就忙着回忆童年了.推箱子的游戏. 假设只有一个箱子.游戏在一个R行C列的由单位格子组成的区域中进行,每一步, 你可以移动到相邻的四个格子中的一个,前提是那个格子是空的:或者,如果 ...

  6. ol li 兼容

    ol 标签在 chrome 60 和 safari12 缩进不一样. 因为序号距离copy距离不一样,导致显示不一样.解决办法. list-style-position: inside;text-in ...

  7. python火爆背后

    Python是一种非常好的编程语言,也是目前非常有前途的一门学科.有很多工作要做,而且薪水也很高,这已经成为每个人进入IT行业的首选.那么Python能做什么呢?为什么这么热? 那么Python能做什 ...

  8. Java 之 字节输出流[OutputStream]

    一.字节输出流 java.io.OutputStream 抽象类是表示字节输出流的所有类的超类,将指定的字节信息写出到目的地. 该类中定义了字节输出流的基本共性功能方法. 公性方法: public v ...

  9. c++混合使用不同标准编译潜在的问题

    最近项目使用的C++的版本到C++11了,但是由于有些静态库(.a)没有源码,因此链接时还在使用非C++11版本的库文件.目前跑了几天,似乎是没出什么问题,但是我还是想说一下这样做有哪些潜在的风险. ...

  10. 用js刷剑指offer(最小的K个数)

    题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 牛客网链接 js代码 function GetLeastNumbe ...